論文の概要: Layered Embeddings for Amodal Instance Segmentation
- arxiv url: http://arxiv.org/abs/2002.06264v1
- Date: Fri, 14 Feb 2020 22:00:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 04:57:46.944295
- Title: Layered Embeddings for Amodal Instance Segmentation
- Title(参考訳): amodal instance segmentationのための階層埋め込み
- Authors: Yanfeng Liu, Eric Psota, Lance P\'erez
- Abstract要約: 提案手法は,目に見える部分と隠蔽部分の両方を明示的に含むことによって,セマンティック・インスタンス・セグメンテーションの表現出力を拡張する。
完全な畳み込みネットワークは、2つの層に一貫したピクセルレベルの埋め込みを生成するように訓練され、クラスタ化されると、結果は各インスタンスの完全な空間範囲と深さ順序を伝達する。
- 参考スコア(独自算出の注目度): 0.7734726150561089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proposed method extends upon the representational output of semantic
instance segmentation by explicitly including both visible and occluded parts.
A fully convolutional network is trained to produce consistent pixel-level
embedding across two layers such that, when clustered, the results convey the
full spatial extent and depth ordering of each instance. Results demonstrate
that the network can accurately estimate complete masks in the presence of
occlusion and outperform leading top-down bounding-box approaches. Source code
available at https://github.com/yanfengliu/layered_embeddings
- Abstract(参考訳): 提案手法は,可視部分とオクルード部分の両方を明示的に含むことにより,意味インスタンスセグメンテーションの表現出力を拡張する。
完全な畳み込みネットワークは、2つの層に一貫したピクセルレベルの埋め込みを生成するように訓練され、クラスタ化されると、結果は各インスタンスの完全な空間範囲と深さ順序を伝達する。
その結果,ネットワークは咬合の有無で完全なマスクを正確に推定でき,トップダウンバウンディングボックスアプローチよりも優れていた。
ソースコード: https://github.com/yanfengliu/layered_embeddings
関連論文リスト
- SemSegDepth: A Combined Model for Semantic Segmentation and Depth
Completion [18.19171031755595]
セマンティックセグメンテーションと深度補完を共同で行うための新しいエンド・ツー・エンドモデルを提案する。
提案手法はモデルへの入力としてRGBとスパース深度に依存し,深度マップとそれに対応するセマンティックセグメンテーション画像を生成する。
Virtual KITTI 2データセットで実施された実験は、セマンティックセグメンテーションとディープコンプリートの両方のタスクをマルチタスクネットワークで組み合わせることで、各タスクのパフォーマンスを効果的に改善できるという、さらなるエビデンスを実証し、提供する。
論文 参考訳(メタデータ) (2022-09-01T11:52:11Z) - Occlusion-Aware Instance Segmentation via BiLayer Network Architectures [73.45922226843435]
本稿では,2層畳み込みネットワーク(BCNet)を提案する。このネットワークでは,トップ層がオブジェクト(オブオーバ)を検出し,ボトム層が部分的にオブオーバドされたインスタンス(オブオーバド)を推測する。
一般的な畳み込みネットワーク設計,すなわちFCN(Fully Convolutional Network)とGCN(Graph Convolutional Network)を用いた2層構造の有効性について検討する。
論文 参考訳(メタデータ) (2022-08-08T21:39:26Z) - Augmenting Convolutional networks with attention-based aggregation [55.97184767391253]
我々は,非局所的推論を実現するために,注目に基づくグローバルマップを用いた畳み込みネットワークの強化方法を示す。
この学習集約層を2つのパラメータ(幅と深さ)でパラメータ化した単純パッチベースの畳み込みネットワークで接続する。
これは、特にメモリ消費の点で、精度と複雑さの間の驚くほど競争力のあるトレードオフをもたらす。
論文 参考訳(メタデータ) (2021-12-27T14:05:41Z) - SOLO: A Simple Framework for Instance Segmentation [84.00519148562606]
インスタンスカテゴリ"は、インスタンスの場所に応じて、インスタンス内の各ピクセルにカテゴリを割り当てる。
SOLO"は、強力なパフォーマンスを備えたインスタンスセグメンテーションのための、シンプルで、直接的で、高速なフレームワークです。
提案手法は, 高速化と精度の両面から, 実例分割の最先端結果を実現する。
論文 参考訳(メタデータ) (2021-06-30T09:56:54Z) - Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [72.38919601150175]
高オーバーラップオブジェクトをセグメント化するBilayer Convolutional Network (BCNet)を提案する。
BCNetはオクルージョンオブジェクト(Occluder)を検出し、ボトムGCN層は部分的にOccludedインスタンス(Occludee)を推論する
論文 参考訳(メタデータ) (2021-03-23T06:25:42Z) - The Devil is in the Boundary: Exploiting Boundary Representation for
Basis-based Instance Segmentation [85.153426159438]
本研究では,既存のグローバルマスクベースの手法を補完するグローバル境界表現を学習するために,Basisベースのインスタンス(B2Inst)を提案する。
私たちのB2Instは一貫した改善をもたらし、シーン内のインスタンス境界を正確に解析します。
論文 参考訳(メタデータ) (2020-11-26T11:26:06Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
我々はSqueeze Reasoningと呼ばれる新しいフレームワークを提案する。
空間地図上の情報を伝播するのではなく、まず入力特徴をチャネルワイドなグローバルベクトルに絞ることを学ぶ。
提案手法はエンドツーエンドのトレーニングブロックとしてモジュール化可能であり,既存のネットワークに簡単に接続可能であることを示す。
論文 参考訳(メタデータ) (2020-11-06T12:17:01Z) - Learning Panoptic Segmentation from Instance Contours [9.347742071428918]
Panopticpixel は、背景 (stuff) とオブジェクト (things) のインスタンスをピクセルレベルで理解することを目的としている。
セマンティックセグメンテーション(レベル分類)とインスタンスセグメンテーションの別々のタスクを組み合わせて、単一の統合されたシーン理解タスクを構築する。
セマンティックセグメンテーションとインスタンス輪郭からインスタンスセグメンテーションを学習する完全畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-10-16T03:05:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。