論文の概要: Video Face Super-Resolution with Motion-Adaptive Feedback Cell
- arxiv url: http://arxiv.org/abs/2002.06378v1
- Date: Sat, 15 Feb 2020 13:14:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 23:09:34.670631
- Title: Video Face Super-Resolution with Motion-Adaptive Feedback Cell
- Title(参考訳): モーションアダプティブフィードバックセルを用いたビデオ顔超解像
- Authors: Jingwei Xin, Nannan Wang, Jie Li, Xinbo Gao, Zhifeng Li
- Abstract要約: 深部畳み込みニューラルネットワーク(CNN)の発展により,ビデオ超解像法(VSR)は近年,顕著な成功を収めている。
本稿では,動作補償を効率的に捕捉し,適応的にネットワークにフィードバックする,シンプルで効果的なブロックである動き適応型フィードバックセル(MAFC)を提案する。
- 参考スコア(独自算出の注目度): 90.73821618795512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video super-resolution (VSR) methods have recently achieved a remarkable
success due to the development of deep convolutional neural networks (CNN).
Current state-of-the-art CNN methods usually treat the VSR problem as a large
number of separate multi-frame super-resolution tasks, at which a batch of low
resolution (LR) frames is utilized to generate a single high resolution (HR)
frame, and running a slide window to select LR frames over the entire video
would obtain a series of HR frames. However, duo to the complex temporal
dependency between frames, with the number of LR input frames increase, the
performance of the reconstructed HR frames become worse. The reason is in that
these methods lack the ability to model complex temporal dependencies and hard
to give an accurate motion estimation and compensation for VSR process. Which
makes the performance degrade drastically when the motion in frames is complex.
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but
effective block, which can efficiently capture the motion compensation and feed
it back to the network in an adaptive way. Our approach efficiently utilizes
the information of the inter-frame motion, the dependence of the network on
motion estimation and compensation method can be avoid. In addition, benefiting
from the excellent nature of MAFC, the network can achieve better performance
in the case of extremely complex motion scenarios. Extensive evaluations and
comparisons validate the strengths of our approach, and the experimental
results demonstrated that the proposed framework is outperform the
state-of-the-art methods.
- Abstract(参考訳): ビデオ超解像法(VSR)は近年,深層畳み込みニューラルネットワーク(CNN)の開発により,顕著な成功を収めている。
現在の最先端CNN法では、VSR問題を多数の個別のマルチフレーム超解像度タスクとして扱い、低解像度(LR)フレームのバッチを使用して単一の高解像度(HR)フレームを生成し、ビデオ全体にわたってLRフレームを選択するためのスライドウィンドウを実行すると、一連のHRフレームが得られる。
しかし, フレーム間の複雑な時間依存性に対して, LR入力フレーム数が増加するにつれて, 再構成HRフレームの性能は悪化する。
理由は、これらの手法には複雑な時間的依存をモデル化する能力がなく、VSRプロセスの正確な動き推定と補償を与えることが難しいからである。
フレーム内の動きが複雑になると性能が劇的に低下する。
本稿では,動作補償を効率的に捕捉し,適応的にネットワークにフィードバックする,シンプルで効果的なブロックである動き適応型フィードバックセル(MAFC)を提案する。
本手法では,フレーム間移動に関する情報を効率的に活用し,ネットワークの動作推定と補償方法への依存性を回避できる。
さらに,MAFCの優れた特性を活かして,非常に複雑な動作シナリオにおいて,ネットワークの性能を向上させることができる。
広範な評価と比較は,提案手法の強みを検証し,提案手法が最先端手法よりも優れていることを実証した。
関連論文リスト
- Motion-Guided Latent Diffusion for Temporally Consistent Real-world Video Super-resolution [15.197746480157651]
本稿では,事前学習した潜伏拡散モデルの強度を利用した実世界のVSRアルゴリズムを提案する。
我々は、LRビデオの時間的ダイナミクスを利用して、動作誘導損失で潜時サンプリング経路を最適化することにより拡散過程を導出する。
動作誘導潜在拡散に基づくVSRアルゴリズムは、実世界のVSRベンチマークデータセットの最先端技術よりも、知覚品質が大幅に向上する。
論文 参考訳(メタデータ) (2023-12-01T14:40:07Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
バースト超解像(BurstSR)は、高解像度(HR)画像を低解像度(LR)画像と雑音画像から再構成することを目的としている。
本稿では,効率よくフレキシブルなリカレントネットワークでフレーム単位のキューを融合させることを提案する。
論文 参考訳(メタデータ) (2023-06-30T12:14:13Z) - Look Back and Forth: Video Super-Resolution with Explicit Temporal
Difference Modeling [105.69197687940505]
本稿では,LR空間とHR空間における時間差の明示的モデル化の役割について検討する。
超解像結果をさらに高めるために、空間残留特徴を抽出するだけでなく、高周波領域における連続フレーム間の差も計算する。
論文 参考訳(メタデータ) (2022-04-14T17:07:33Z) - Zooming SlowMo: An Efficient One-Stage Framework for Space-Time Video
Super-Resolution [100.11355888909102]
時空ビデオ超解像度は低解像度(LR)と低フレームレート(LFR)ビデオシーケンスから高解像度(HR)スローモーションビデオを生成することを目的としている。
入力LRおよびLFRビデオから直接HRスローモーション映像シーケンスを再構成できる一段階の時空間ビデオ超解像フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-15T17:59:23Z) - MuCAN: Multi-Correspondence Aggregation Network for Video
Super-Resolution [63.02785017714131]
ビデオ超解像(VSR)は、複数の低解像度フレームを使用して、各フレームに対して高解像度の予測を生成することを目的としている。
フレーム間およびフレーム内は、時間的および空間的情報を利用するための鍵となるソースである。
VSRのための効果的なマルチ対応アグリゲーションネットワーク(MuCAN)を構築した。
論文 参考訳(メタデータ) (2020-07-23T05:41:27Z) - Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video
Super-Resolution [95.26202278535543]
単純な解決策は、ビデオフレーム(VFI)とビデオ超解像(VSR)の2つのサブタスクに分割することである。
時間合成と空間超解像はこの課題に関係している。
LFR,LRビデオからHRスローモーション映像を直接合成するワンステージ時空間ビデオ超解像フレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-26T16:59:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。