論文の概要: FCA2: Frame Compression-Aware Autoencoder for Modular and Fast Compressed Video Super-Resolution
- arxiv url: http://arxiv.org/abs/2506.11545v1
- Date: Fri, 13 Jun 2025 07:59:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.701622
- Title: FCA2: Frame Compression-Aware Autoencoder for Modular and Fast Compressed Video Super-Resolution
- Title(参考訳): FCA2: Modular and Fast Compressed Video Super-Resolutionのためのフレーム圧縮対応オートエンコーダ
- Authors: Zhaoyang Wang, Jie Li, Wen Lu, Lihuo He, Maoguo Gong, Xinbo Gao,
- Abstract要約: 最先端(SOTA)圧縮ビデオ超解像(CVSR)モデルは、長期の推論時間、複雑なトレーニングパイプライン、補助情報への依存など、永続的な課題に直面している。
ハイパースペクトル画像(HSI)とビデオデータの構造的および統計的類似性から着想を得た,効率的でスケーラブルなソリューションを提案する。
提案手法では,計算複雑性を低減し,推論を高速化し,フレーム間の時間情報の抽出を促進する圧縮駆動型次元減少戦略を導入する。
- 参考スコア(独自算出の注目度): 68.77813885751308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art (SOTA) compressed video super-resolution (CVSR) models face persistent challenges, including prolonged inference time, complex training pipelines, and reliance on auxiliary information. As video frame rates continue to increase, the diminishing inter-frame differences further expose the limitations of traditional frame-to-frame information exploitation methods, which are inadequate for addressing current video super-resolution (VSR) demands. To overcome these challenges, we propose an efficient and scalable solution inspired by the structural and statistical similarities between hyperspectral images (HSI) and video data. Our approach introduces a compression-driven dimensionality reduction strategy that reduces computational complexity, accelerates inference, and enhances the extraction of temporal information across frames. The proposed modular architecture is designed for seamless integration with existing VSR frameworks, ensuring strong adaptability and transferability across diverse applications. Experimental results demonstrate that our method achieves performance on par with, or surpassing, the current SOTA models, while significantly reducing inference time. By addressing key bottlenecks in CVSR, our work offers a practical and efficient pathway for advancing VSR technology. Our code will be publicly available at https://github.com/handsomewzy/FCA2.
- Abstract(参考訳): 最先端(SOTA)圧縮ビデオ超解像(CVSR)モデルは、長期の推論時間、複雑なトレーニングパイプライン、補助情報への依存など、永続的な課題に直面している。
ビデオフレームレートが向上するにつれて、フレーム間差の減少により、現在のビデオ超解像(VSR)要求に対処するには不十分な、従来のフレーム間情報エクスプロイト手法の限界が顕在化する。
これらの課題を克服するために、ハイパースペクトル画像(HSI)とビデオデータの構造的および統計的類似性から着想を得た、効率的でスケーラブルなソリューションを提案する。
提案手法では,計算複雑性を低減し,推論を高速化し,フレーム間の時間情報の抽出を促進する圧縮駆動型次元減少戦略を導入する。
提案されたモジュールアーキテクチャは、既存のVSRフレームワークとのシームレスな統合のために設計されており、多様なアプリケーションにまたがる強力な適応性と転送性を保証する。
実験の結果,提案手法は従来のSOTAモデルと同等以上の性能を達成し,推論時間を大幅に短縮することがわかった。
CVSRの重要なボトルネックに対処することで、我々の研究はVSR技術の進歩のための実用的で効率的な経路を提供する。
私たちのコードはhttps://github.com/handsomewzy/FCA2.comで公開されます。
関連論文リスト
- DiffVSR: Revealing an Effective Recipe for Taming Robust Video Super-Resolution Against Complex Degradations [25.756755602342942]
本稿では,この学習負担を段階的学習を通じて体系的に分解するプログレッシブ・ラーニング・ストラテジー(PLS)を特徴とするDiffVSRを提案する。
我々のフレームワークには、追加のトレーニングオーバーヘッドを伴わずに競合時間一貫性を維持するILT(Interweaved Latent Transition)技術も組み込まれています。
論文 参考訳(メタデータ) (2025-01-17T10:53:03Z) - A Codec Information Assisted Framework for Efficient Compressed Video
Super-Resolution [15.690562510147766]
リカレントニューラルネットワークアーキテクチャを用いたビデオ超解法(VSR)は、長距離時間依存性の効率的なモデリングのため、有望なソリューションである。
圧縮ビデオの繰り返しVSRモデルの高速化と高速化を目的としたコーデック情報支援フレームワーク(CIAF)を提案する。
論文 参考訳(メタデータ) (2022-10-15T08:48:29Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
不安定な圧縮性能の問題に対処するために,不均一変形補償戦略(HDCVC)を用いた学習ビデオ圧縮フレームワークを提案する。
より具体的には、提案アルゴリズムは隣接する2つのフレームから特徴を抽出し、コンテンツ近傍の不均一な変形(HetDeform)カーネルオフセットを推定する。
実験結果から,HDCVCは最近の最先端の学習ビデオ圧縮手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-11T02:31:31Z) - Fast Online Video Super-Resolution with Deformable Attention Pyramid [172.16491820970646]
ビデオスーパーレゾリューション(VSR)には、ビデオストリーミングやテレビなど、厳格な因果性、リアルタイム、レイテンシの制約を課す多くのアプリケーションがある。
変形性アテンションピラミッド(DAP)に基づく繰り返しVSRアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-02-03T17:49:04Z) - Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video
Super-Resolution [95.26202278535543]
単純な解決策は、ビデオフレーム(VFI)とビデオ超解像(VSR)の2つのサブタスクに分割することである。
時間合成と空間超解像はこの課題に関係している。
LFR,LRビデオからHRスローモーション映像を直接合成するワンステージ時空間ビデオ超解像フレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-26T16:59:48Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
深部畳み込みニューラルネットワーク(CNN)の発展により,ビデオ超解像法(VSR)は近年,顕著な成功を収めている。
本稿では,動作補償を効率的に捕捉し,適応的にネットワークにフィードバックする,シンプルで効果的なブロックである動き適応型フィードバックセル(MAFC)を提案する。
論文 参考訳(メタデータ) (2020-02-15T13:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。