論文の概要: Convex Optimization on Functionals of Probability Densities
- arxiv url: http://arxiv.org/abs/2002.06488v2
- Date: Sat, 14 Mar 2020 05:13:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 18:25:02.893799
- Title: Convex Optimization on Functionals of Probability Densities
- Title(参考訳): 確率密度関数の凸最適化
- Authors: Tomohiro Nishiyama
- Abstract要約: 情報理論において、いくつかの最適化問題は、確率密度の厳密な凸函数上の凸最適化問題をもたらす。
本稿では,これらの問題を考察し,最小化要因が存在する場合の最小化条件と最小化要因の特異性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In information theory, some optimization problems result in convex
optimization problems on strictly convex functionals of probability densities.
In this note, we study these problems and show conditions of minimizers and the
uniqueness of the minimizer if there exist a minimizer.
- Abstract(参考訳): 情報理論において、いくつかの最適化問題は、確率密度の厳密な凸函数上の凸最適化問題をもたらす。
本稿では,これらの問題を考察し,最小化要因が存在する場合の最小化条件と最小化要因の特異性を示す。
関連論文リスト
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
本稿では,アルゴリズムが検索対象関数の雑音評価にのみアクセス可能な2次スムーズかつ強い凸関数を最適化する問題を考察する。
本研究は, ミニマックス単純後悔率について, 一致した上界と下界を発達させることにより, 初めて厳密な評価を行ったものである。
論文 参考訳(メタデータ) (2024-06-28T02:56:22Z) - Low-Rank Extragradient Methods for Scalable Semidefinite Optimization [0.0]
この問題が低ランクの解を許容する高次元かつ高可算な設定に焦点をあてる。
これらの条件下では、よく知られた過次法が制約付き最適化問題の解に収束することを示す理論的結果がいくつか提示される。
論文 参考訳(メタデータ) (2024-02-14T10:48:00Z) - Structured Low-Rank Tensor Learning [2.1227526213206542]
構造制約のある部分的な観測から低ランクテンソルを学習する問題を考察する。
このようなテンソルの新たな分解法を提案し、より単純な最適化問題を導いた。
論文 参考訳(メタデータ) (2023-05-13T17:04:54Z) - Optimal Algorithms for Stochastic Complementary Composite Minimization [55.26935605535377]
統計学と機械学習における正規化技術に触発され,補完的な複合化の最小化について検討した。
予測と高い確率で、新しい過剰なリスク境界を提供する。
我々のアルゴリズムはほぼ最適であり、このクラスの問題に対して、新しいより低い複雑性境界によって証明する。
論文 参考訳(メタデータ) (2022-11-03T12:40:24Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
非最適化近似問題を考える。
本稿では,最優先計算を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-11T09:37:04Z) - Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables [11.310502327308575]
独立して通常は分散しているコンポーネントのシナリオについて研究する。
期待されるコストとその分散をトレードオフする問題を多目的に定式化する。
また,本手法は,木に散らばった最小限の問題に対して最適解の集合を計算するためにも有効であることを示す。
論文 参考訳(メタデータ) (2021-09-13T09:24:23Z) - Finite Sample Analysis of Minimax Offline Reinforcement Learning:
Completeness, Fast Rates and First-Order Efficiency [83.02999769628593]
強化学習におけるオフ・ポリティィ・アセスメント(OPE)の理論的特徴について述べる。
ミニマックス法により、重みと品質関数の高速収束を実現することができることを示す。
非タブラル環境における1次効率を持つ最初の有限サンプル結果を示す。
論文 参考訳(メタデータ) (2021-02-05T03:20:39Z) - Potential Function-based Framework for Making the Gradients Small in
Convex and Min-Max Optimization [14.848525762485872]
勾配を小さくすることは、統一的かつ単純な収束論証を導いた基本的な最適化問題である。
本稿では,勾配を小さくするための標準手法の収束を研究するために,新しいポテンシャル関数ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-28T16:41:00Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
強凸関数のゼロ次最適化問題について検討する。
予測勾配降下アルゴリズムのランダム化近似を考察する。
その結果,0次アルゴリズムはサンプルの複雑性や問題パラメータの点でほぼ最適であることが示唆された。
論文 参考訳(メタデータ) (2020-06-14T10:42:23Z) - Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion
and Strong Solutions to Variational Inequalities [14.848525762485872]
非拡張写像、単調リプシッツ作用素、近位写像の間の接続を利用して、単調包含問題に対する準最適解を得る。
これらの結果は、変分不等式問題に対する強い解の近似、凸凸凹 min-max 最適化問題の近似、および min-max 最適化問題における勾配のノルムの最小化について、ほぼ最適に保証される。
論文 参考訳(メタデータ) (2020-02-20T17:12:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。