論文の概要: Blind Adversarial Network Perturbations
- arxiv url: http://arxiv.org/abs/2002.06495v1
- Date: Sun, 16 Feb 2020 02:59:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 18:25:37.754363
- Title: Blind Adversarial Network Perturbations
- Title(参考訳): 視覚障害者ネットワークの摂動
- Authors: Milad Nasr, Alireza Bahramali, Amir Houmansadr
- Abstract要約: 本研究では,経験的ネットワークトラフィックのパターンに強調的摂動を適用することで,敵が交通分析手法を破ることができることを示す。
- 参考スコア(独自算出の注目度): 33.121816204736035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) are commonly used for various traffic analysis
problems, such as website fingerprinting and flow correlation, as they
outperform traditional (e.g., statistical) techniques by large margins.
However, deep neural networks are known to be vulnerable to adversarial
examples: adversarial inputs to the model that get labeled incorrectly by the
model due to small adversarial perturbations. In this paper, for the first
time, we show that an adversary can defeat DNN-based traffic analysis
techniques by applying \emph{adversarial perturbations} on the patterns of
\emph{live} network traffic.
- Abstract(参考訳): ディープニューラルネットワーク(Deep Neural Networks, DNN)は、ウェブサイトのフィンガープリントやフロー相関などの様々なトラフィック分析問題によく使われ、従来の(統計的な)手法よりも大きなマージンで優れている。
しかし、ディープニューラルネットワークは、敵の例に弱いことが知られている: 敵の摂動によってモデルによって誤ってラベル付けされるモデルに対する敵の入力。
本稿では,ネットワークトラフィックのパターンに \emph{adversarial perturbations} を適用することで,DNN ベースのトラフィック解析手法を初めて破ることができることを示す。
関連論文リスト
- A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - A Geometrical Approach to Evaluate the Adversarial Robustness of Deep
Neural Networks [52.09243852066406]
対向収束時間スコア(ACTS)は、対向ロバストネス指標として収束時間を測定する。
我々は,大規模画像Netデータセットに対する異なる敵攻撃に対して,提案したACTSメトリックの有効性と一般化を検証する。
論文 参考訳(メタデータ) (2023-10-10T09:39:38Z) - An Adversarial Robustness Perspective on the Topology of Neural Networks [12.416690940269772]
ニューラルネットワーク(NN)トポロジが敵の強靭性に与える影響について検討する。
クリーンな入力からのグラフはハイウェイエッジを中心により集中しているのに対して、敵からのグラフはより拡散している。
論文 参考訳(メタデータ) (2022-11-04T18:00:53Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - Adversarial Attack via Dual-Stage Network Erosion [7.28871533402894]
ディープニューラルネットワークは敵の例に弱いため、微妙な摂動を加えることでディープモデルを騙すことができる。
本稿では, 既存モデルに2段階の特徴レベル摂動を適用し, 多様なモデルの集合を暗黙的に生成する手法を提案する。
我々は、非残留ネットワークと残留ネットワークの両方で包括的な実験を行い、最先端の計算手法と同様の計算コストで、より伝達可能な逆の例を得る。
論文 参考訳(メタデータ) (2022-01-01T02:38:09Z) - Spatially Focused Attack against Spatiotemporal Graph Neural Networks [8.665638585791235]
深時空間グラフニューラルネットワーク(GNN)は,トラフィック予測アプリケーションにおいて大きな成功を収めている。
GNNが現実世界の予測アプリケーションに脆弱性がある場合、ハッカーは簡単に結果を操作でき、交通渋滞や都市規模の破壊を引き起こす。
論文 参考訳(メタデータ) (2021-09-10T01:31:53Z) - Unveiling the potential of Graph Neural Networks for robust Intrusion
Detection [2.21481607673149]
本稿では,グラフとして構造化された攻撃の流れパターンを学習するための新しいグラフニューラルネットワーク(GNN)モデルを提案する。
我々のモデルは従来の実験と同等の精度を維持することができる一方、最先端のML技術は敵攻撃下で50%の精度(F1スコア)を低下させる。
論文 参考訳(メタデータ) (2021-07-30T16:56:39Z) - Generating Adversarial Examples with Graph Neural Networks [26.74003742013481]
両手法の強みを生かしたグラフニューラルネットワーク(GNN)に基づく新たな攻撃を提案する。
PGDアタック,MI-FGSM,Carini,Wagnerアタックなど,最先端の敵攻撃に勝っていることを示す。
我々は、敵攻撃のより実証的な比較を可能にするために特別に設計された、新しい挑戦的なデータセットを提供する。
論文 参考訳(メタデータ) (2021-05-30T22:46:41Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Detecting Adversarial Examples by Input Transformations, Defense
Perturbations, and Voting [71.57324258813674]
畳み込みニューラルネットワーク(CNN)は、視覚認識タスクにおいて超人的性能に達することが証明されている。
CNNは敵の例、すなわち不正な出力をネットワークに強制する悪意のある画像によって簡単に騙される。
本稿では,画像変換による敵例の検出を幅広く検討し,新しい手法を提案する。
論文 参考訳(メタデータ) (2021-01-27T14:50:41Z) - Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness [97.67477497115163]
我々は、モード接続を用いて、ディープニューラルネットワークの対角的堅牢性を研究する。
実験では、異なるネットワークアーキテクチャやデータセットに適用される様々な種類の敵攻撃について取り上げる。
以上の結果から,モード接続は,敵の強靭性を評価・改善するための総合的なツールであり,実用的な手段であることが示唆された。
論文 参考訳(メタデータ) (2020-04-30T19:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。