論文の概要: Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles
- arxiv url: http://arxiv.org/abs/2103.10229v1
- Date: Thu, 18 Mar 2021 13:04:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-19 13:56:42.853082
- Title: Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles
- Title(参考訳): アクティベーションプロファイルを用いたディープニューラルネットワークにおける説明可能な逆攻撃
- Authors: Gabriel D. Cantareira, Rodrigo F. Mello, Fernando V. Paulovich
- Abstract要約: 本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
- 参考スコア(独自算出の注目度): 69.9674326582747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As neural networks become the tool of choice to solve an increasing variety
of problems in our society, adversarial attacks become critical. The
possibility of generating data instances deliberately designed to fool a
network's analysis can have disastrous consequences. Recent work has shown that
commonly used methods for model training often result in fragile abstract
representations that are particularly vulnerable to such attacks. This paper
presents a visual framework to investigate neural network models subjected to
adversarial examples, revealing how models' perception of the adversarial data
differs from regular data instances and their relationships with class
perception. Through different use cases, we show how observing these elements
can quickly pinpoint exploited areas in a model, allowing further study of
vulnerable features in input data and serving as a guide to improving model
training and architecture.
- Abstract(参考訳): ニューラルネットワークが社会の様々な問題を解決するための選択ツールになるにつれて、敵対的な攻撃が重要になる。
ネットワーク分析を騙すために意図的に設計されたデータインスタンスを生成する可能性は、悲惨な結果をもたらす可能性がある。
近年の研究では、モデルトレーニングに一般的に使用される手法は、そのような攻撃に対して特に脆弱な脆弱な抽象表現をもたらすことが示されている。
そこで本論文では, ニューラルネットワークモデルにおいて, 逆データに対するモデル認識が正規データインスタンスとどのように異なるか, クラス知覚との関係を明らかにする。
さまざまなユースケースを通じて、これらの要素を観察することで、モデルの悪用された領域を迅速に特定し、入力データの脆弱な特徴をさらに調査し、モデルのトレーニングとアーキテクチャを改善するためのガイドとなることを示します。
関連論文リスト
- Transpose Attack: Stealing Datasets with Bidirectional Training [4.166238443183223]
敵は正統なモデルの下で保護された学習環境からデータセットを抽出できることを示す。
本稿では,感染モデルを検出するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-13T15:14:50Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
我々の研究では、最大5つの攻撃アルゴリズムを3つのデータセットにわたって探索する。
対人摂動における人間の識別可能な特徴を同定する。
画素レベルのアノテーションを用いて、そのような特徴を抽出し、ターゲットモデルに妥協する能力を実証する。
論文 参考訳(メタデータ) (2023-09-28T22:31:29Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
予測符号化は、当初脳の情報処理をモデル化するために開発されたメッセージパッシングフレームワークである。
本研究では,予測符号化のメッセージパス規則に依存するモデルを構築する。
提案したモデルは,帰納的タスクと帰納的タスクの両方において,標準的なモデルに匹敵する性能を示す。
論文 参考訳(メタデータ) (2022-12-09T03:58:22Z) - Interactive Analysis of CNN Robustness [11.136837582678869]
Perturberはウェブベースのアプリケーションで、3D入力シーンがインタラクティブに摂動した場合、CNNのアクティベーションと予測がどのように進化するかをユーザが調査することができる。
パーターバーは、カメラコントロール、照明とシェーディング効果、背景の修正、物体の変形、敵の攻撃など、様々なシーン修正を提供している。
機械学習の専門家によるケーススタディによると、Perturberはモデルの脆弱性に関する仮説を素早く生成し、モデルの振る舞いを質的に比較するのに役立つ。
論文 参考訳(メタデータ) (2021-10-14T18:52:39Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
ニューラルネットワークは、人間の視覚にほとんど受容できない敵の例に弱いことがよく確認されている。
既存の防衛は、敵の攻撃に対するモデルの堅牢性を強化する傾向にある。
本稿では,新たな雑音と組み合わせた新しい手法を提案し,不整合戦略を用いて敵のサンプルを検出する。
論文 参考訳(メタデータ) (2020-09-06T13:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。