Two-dimensional Multi-fiber Spectrum Image Correction Based on Machine
Learning Techniques
- URL: http://arxiv.org/abs/2002.06600v1
- Date: Sun, 16 Feb 2020 15:39:09 GMT
- Title: Two-dimensional Multi-fiber Spectrum Image Correction Based on Machine
Learning Techniques
- Authors: Jiali Xu, Qian Yin, Ping Guo, and Xin Zheng
- Abstract summary: We propose a novel method to solve the problem of spatial variation PSF through image aberration correction.
When CCD image aberration is corrected, PSF, the convolution kernel, can be approximated by one spatial invariant PSF only.
- Score: 8.754036933225398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to limited size and imperfect of the optical components in a
spectrometer, aberration has inevitably been brought into two-dimensional
multi-fiber spectrum image in LAMOST, which leads to obvious spacial variation
of the point spread functions (PSFs). Consequently, if spatial variant PSFs are
estimated directly , the huge storage and intensive computation requirements
result in deconvolutional spectral extraction method become intractable. In
this paper, we proposed a novel method to solve the problem of spatial
variation PSF through image aberration correction. When CCD image aberration is
corrected, PSF, the convolution kernel, can be approximated by one spatial
invariant PSF only. Specifically, machine learning techniques are adopted to
calibrate distorted spectral image, including Total Least Squares (TLS)
algorithm, intelligent sampling method, multi-layer feed-forward neural
networks. The calibration experiments on the LAMOST CCD images show that the
calibration effect of proposed method is effectible. At the same time, the
spectrum extraction results before and after calibration are compared, results
show the characteristics of the extracted one-dimensional waveform are more
close to an ideal optics system, and the PSF of the corrected object spectrum
image estimated by the blind deconvolution method is nearly central symmetry,
which indicates that our proposed method can significantly reduce the
complexity of spectrum extraction and improve extraction accuracy.
Related papers
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - Super-resolution of ultrafast pulses via spectral inversion [0.0]
We experimentally demonstrate a spectroscopic super-resolution method aimed at broadband light (10s to 100s of GHz)
We study the paradigmatic problem of estimating a small separation between two incoherent spectral features of equal brightness, with a small number of photons per coherence time.
The setup is based on an actively stabilized Mach-Zehnder-type interferometer with electro-optic time lenses and passive spectral dispersers implementing the inversion.
arXiv Detail & Related papers (2024-03-18T12:21:37Z) - Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
Most fusion methods solely focus on the fusion algorithm itself and overlook the degradation models.
We propose physics-inspired degradation models (PIDM) to model the degradation of LR-HSI and HR-MSI.
Our proposed PIDM can boost the fusion performance of existing fusion methods in practical scenarios.
arXiv Detail & Related papers (2024-02-04T09:07:28Z) - Residual Degradation Learning Unfolding Framework with Mixing Priors
across Spectral and Spatial for Compressive Spectral Imaging [29.135848304404533]
coded aperture snapshot spectral imaging (CASSI) is proposed.
core problem of the CASSI system is to recover the reliable and fine underlying 3D spectral cube from the 2D measurement.
We propose a Residual Degradation Learning Unfolding Framework (RDLUF) which bridges the gap between the sensing matrix and the degradation process.
arXiv Detail & Related papers (2022-11-13T12:31:49Z) - D$^\text{2}$UF: Deep Coded Aperture Design and Unrolling Algorithm for
Compressive Spectral Image Fusion [22.0246327137227]
This paper presents the fusion of the compressive measurements of a low-spatial high-spectral resolution coded aperture snapshot spectral imager (CASSI) architecture and a high-spatial low-spectral resolution multispectral color filter array (MCFA) system.
Unlike previous CSIF works, this paper proposes joint optimization of the sensing architectures and a reconstruction network in an end-to-end (E2E) manner.
arXiv Detail & Related papers (2022-05-24T15:39:34Z) - Spectral Splitting and Aggregation Network for Hyperspectral Face
Super-Resolution [82.59267937569213]
High-resolution (HR) hyperspectral face image plays an important role in face related computer vision tasks under uncontrolled conditions.
In this paper, we investigate how to adapt the deep learning techniques to hyperspectral face image super-resolution.
We present a spectral splitting and aggregation network (SSANet) for HFSR with limited training samples.
arXiv Detail & Related papers (2021-08-31T02:13:00Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - LADMM-Net: An Unrolled Deep Network For Spectral Image Fusion From
Compressive Data [6.230751621285322]
Hyperspectral (HS) and multispectral (MS) image fusion aims at estimating a high-resolution spectral image from a low-spatial-resolution HS image and a low-spectral-resolution MS image.
In this work, a deep learning architecture under the algorithm unrolling approach is proposed for solving the fusion problem from HS and MS compressive measurements.
arXiv Detail & Related papers (2021-03-01T12:04:42Z) - Fourth-Order Nonlocal Tensor Decomposition Model for Spectral Computed
Tomography [20.03088101097943]
Spectral computed tomography (CT) can reconstruct spectral images from different energy bins using photon counting detectors (PCDs)
Due to the limited photons and counting rate in the corresponding spectral fraction, the reconstructed spectral images usually suffer from severe noise.
In this paper, a fourth-order nonlocal tensor decomposition model for spectral CT image reconstruction (FONT-SIR) is proposed.
arXiv Detail & Related papers (2020-10-27T15:14:36Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.