論文の概要: Superpixel Segmentation via Convolutional Neural Networks with
Regularized Information Maximization
- arxiv url: http://arxiv.org/abs/2002.06765v3
- Date: Fri, 26 Jun 2020 14:02:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 12:16:36.076961
- Title: Superpixel Segmentation via Convolutional Neural Networks with
Regularized Information Maximization
- Title(参考訳): 正規化情報最大化を伴う畳み込みニューラルネットワークによるスーパーピクセルセグメンテーション
- Authors: Teppei Suzuki
- Abstract要約: ランダムd畳み込みニューラルネットワーク(CNN)を推論時間で最適化し,教師なしのスーパーピクセルセグメンテーション手法を提案する。
提案手法は,スーパーピクセルセグメンテーションの目的関数を最小化することにより,ラベルのない単一画像からCNNを介してスーパーピクセルを生成する。
- 参考スコア(独自算出の注目度): 11.696069523681178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an unsupervised superpixel segmentation method by optimizing a
randomly-initialized convolutional neural network (CNN) in inference time. Our
method generates superpixels via CNN from a single image without any labels by
minimizing a proposed objective function for superpixel segmentation in
inference time. There are three advantages to our method compared with many of
existing methods: (i) leverages an image prior of CNN for superpixel
segmentation, (ii) adaptively changes the number of superpixels according to
the given images, and (iii) controls the property of superpixels by adding an
auxiliary cost to the objective function. We verify the advantages of our
method quantitatively and qualitatively on BSDS500 and SBD datasets.
- Abstract(参考訳): ランダム初期化畳み込みニューラルネットワーク(CNN)を推論時間で最適化し,教師なしのスーパーピクセルセグメンテーション手法を提案する。
提案手法は,スーパーピクセルセグメンテーションの目的関数を最小化することにより,ラベルのない単一画像からスーパーピクセルを生成する。
本手法には既存の手法に比べて3つの利点がある。
(i)スーパーピクセルのセグメンテーションにcnnより前の画像を利用する。
(二)所定の画像に応じてスーパーピクセルの数を適応的に変更し、
(iii)目的関数に補助コストを加えることにより、スーパーピクセルの特性を制御する。
BSDS500 と SBD のデータセット上で,本手法の利点を定量的かつ質的に検証する。
関連論文リスト
- Superpixel Transformers for Efficient Semantic Segmentation [32.537400525407186]
本稿では,画像の過剰部分化というスーパーピクセルの考え方を活用し,近代的なトランスフォーマーフレームワークでそれらを適用することによって,その解決策を提案する。
提案手法は,グローバルな自己認識機構によって生成されるリッチなスーパーピクセル特徴により,セマンティックセマンティックセグメンテーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-09-28T23:09:30Z) - Rethinking Unsupervised Neural Superpixel Segmentation [6.123324869194195]
CNNによるスーパーピクセルセグメンテーションのための教師なし学習が研究されている。
このようなネットワークの有効性を改善するために,3つの重要な要素を提案する。
BSDS500データセットを実験した結果,提案手法の意義を示す証拠が得られた。
論文 参考訳(メタデータ) (2022-06-21T09:30:26Z) - Efficient Multiscale Object-based Superpixel Framework [62.48475585798724]
我々は,SICLE(Iterative CLEarcutting)によるスーパーピクセルという,新しいスーパーピクセルフレームワークを提案する。
SICLEは、複数スケールのセグメンテーションをオンザフライで生成できるオブジェクト情報を利用する。
これは最近のスーパーピクセル法を一般化し、複数のデライン化指標に従って効率と効率性に関する最先端のアプローチを超越している。
論文 参考訳(メタデータ) (2022-04-07T15:59:38Z) - Saliency Enhancement using Superpixel Similarity [77.34726150561087]
Saliency Object Detection (SOD) は画像解析にいくつかの応用がある。
深層学習に基づくSOD法は最も効果的であるが、類似した色を持つ前景の部品を見逃すことがある。
スーパーピクセル類似性(SESS)に対するtextitSaliency Enhancement というポストプロセッシング手法を導入する。
我々は,SESSが5つの画像データセット上での3つのディープラーニングに基づくSOD手法の結果を連続的に,かつ著しく改善できることを実証した。
論文 参考訳(メタデータ) (2021-12-01T17:22:54Z) - Generating Superpixels for High-resolution Images with Decoupled Patch
Calibration [82.21559299694555]
Patch Networks (PCNet) は高解像度のスーパーピクセルセグメンテーションを効率的かつ正確に実装するように設計されている。
DPCは高解像度画像から局所パッチを取得し、動的にバイナリマスクを生成し、ネットワークを領域境界に集中させる。
特に、DPCは高解像度画像からローカルパッチを取り、動的にバイナリマスクを生成して、ネットワークを領域境界に集中させる。
論文 参考訳(メタデータ) (2021-08-19T10:33:05Z) - HERS Superpixels: Deep Affinity Learning for Hierarchical Entropy Rate
Segmentation [0.0]
スーパーピクセルセグメンテーションのための2段階グラフベースのフレームワークを提案する。
最初の段階では,ペアワイズ画素親和性を学習するディープ親和性学習ネットワークを導入する。
第2段階では階層エントロピーレート(HERS)と呼ばれる高効率スーパーピクセル法を提案する。
論文 参考訳(メタデータ) (2021-06-07T16:20:04Z) - Implicit Integration of Superpixel Segmentation into Fully Convolutional
Networks [11.696069523681178]
スーパーピクセル方式をCNNに暗黙的に統合する方法を提案する。
提案手法では,下地層に画素を階層的にグループ化し,スーパーピクセルを生成する。
本手法は,セマンティックセグメンテーション,スーパーピクセルセグメンテーション,モノクル深度推定などのタスクで評価する。
論文 参考訳(メタデータ) (2021-03-05T02:20:26Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
今回提案する新しいtextbfAssociation textbfImplantation(AI)モジュールは、ネットワークがピクセルとその周辺グリッド間の関係を明示的にキャプチャすることを可能にする。
本手法は最先端性能を実現するだけでなく,十分な推論効率を維持することができた。
論文 参考訳(メタデータ) (2021-01-26T10:40:13Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
独立意味情報を持つ各代表領域を部分空間とみなし,部分空間クラスタリング問題としてスーパーピクセルセグメンテーションを定式化する。
従来のサブスペースクラスタリングとスーパーピクセルセグメンテーションの簡単な統合は,画素の空間相関のために効果的に機能しないことを示す。
本稿では,空間隣接画素に類似の属性を付加してスーパーピクセルにクラスタリング可能な,凸局所性制約付きサブスペースクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2020-12-11T06:18:36Z) - Spatially-Adaptive Pixelwise Networks for Fast Image Translation [57.359250882770525]
高速かつ効率的な画像-画像変換を目的とした新しいジェネレータアーキテクチャを提案する。
私たちはピクセルワイズネットワークを使用します。つまり、各ピクセルは他のピクセルとは独立して処理されます。
私たちのモデルは最先端のベースラインよりも最大18倍高速です。
論文 参考訳(メタデータ) (2020-12-05T10:02:03Z) - Superpixel Segmentation with Fully Convolutional Networks [32.878045921919714]
本稿では,通常の画像グリッド上でのスーパーピクセルの予測に完全畳み込みネットワークを用いる新しい手法を提案する。
ベンチマーク・データセットによる実験結果から,提案手法は最先端のスーパーピクセル・セグメンテーション性能を実現することが示された。
ステレオマッチングのための人気のあるネットワークアーキテクチャを改良し、スーパーピクセルと格差を同時に予測する。
論文 参考訳(メタデータ) (2020-03-29T02:42:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。