論文の概要: t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections
- arxiv url: http://arxiv.org/abs/2002.06910v5
- Date: Thu, 18 Apr 2024 16:03:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 21:05:42.586843
- Title: t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections
- Title(参考訳): t-viSNE: t-SNE射影の相互評価と解釈
- Authors: Angelos Chatzimparmpas, Rafael M. Martins, Andreas Kerren,
- Abstract要約: t-viSNEは、t-SNEプロジェクションを視覚的に探索するためのインタラクティブツールである。
本稿では, t-SNEプロジェクションの可視化のために, 一貫性があり, アクセスしやすく, 統合された様々なビューの集合を提案する。
- 参考スコア(独自算出の注目度): 3.5229503563299915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: t-Distributed Stochastic Neighbor Embedding (t-SNE) for the visualization of multidimensional data has proven to be a popular approach, with successful applications in a wide range of domains. Despite their usefulness, t-SNE projections can be hard to interpret or even misleading, which hurts the trustworthiness of the results. Understanding the details of t-SNE itself and the reasons behind specific patterns in its output may be a daunting task, especially for non-experts in dimensionality reduction. In this work, we present t-viSNE, an interactive tool for the visual exploration of t-SNE projections that enables analysts to inspect different aspects of their accuracy and meaning, such as the effects of hyper-parameters, distance and neighborhood preservation, densities and costs of specific neighborhoods, and the correlations between dimensions and visual patterns. We propose a coherent, accessible, and well-integrated collection of different views for the visualization of t-SNE projections. The applicability and usability of t-viSNE are demonstrated through hypothetical usage scenarios with real data sets. Finally, we present the results of a user study where the tool's effectiveness was evaluated. By bringing to light information that would normally be lost after running t-SNE, we hope to support analysts in using t-SNE and making its results better understandable.
- Abstract(参考訳): t-Distributed Stochastic Neighbor Embedding (t-SNE) for the visualization of multidimensional data has been proven to be popular approach, with successful application in wide range of domain。
その有用性にもかかわらず、t-SNEプロジェクションは解釈しにくいり、誤解を招くこともあるため、結果の信頼性を損なう。
t-SNE自体の詳細と出力中の特定のパターンの背後にある理由を理解することは、特に次元減少の非専門家にとって、大変な作業である可能性がある。
本研究では,T-SNEプロジェクションを視覚的に探索するためのインタラクティブツールであるt-viSNEを提案する。このプロジェクションは,ハイパーパラメータの影響,距離と周辺保存,特定近傍の密度とコスト,次元と視覚パターンの相関など,分析者がそれぞれの精度と意味の異なる側面を検査することができる。
本稿では, t-SNEプロジェクションの可視化のために, 一貫性があり, アクセスしやすく, 統合された様々なビューの集合を提案する。
t-viSNEの適用性とユーザビリティは,実データを用いた仮説的利用シナリオを通じて実証される。
最後に,ツールの有効性が評価されたユーザスタディの結果を示す。
t-SNEを実行した後、通常失われるであろう光情報をもたらすことで、t-SNEの使用をアナリストに支援し、その結果をより理解しやすくしたいと考えています。
関連論文リスト
- Correlation of Object Detection Performance with Visual Saliency and Depth Estimation [0.09208007322096533]
本稿では,物体検出精度と,深度予測と視覚塩分率予測の2つの基本的な視覚的課題の相関について検討する。
分析の結果,これらの相関は対象のカテゴリ間で有意な変化を示し,相関値がより小さいオブジェクトの最大3倍も大きいことが判明した。
これらの結果から, 物体検出アーキテクチャに視覚的サリエンシ機能を組み込むことは, 深度情報よりも有益であることが示唆された。
論文 参考訳(メタデータ) (2024-11-05T06:34:19Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - Towards In-Vehicle Multi-Task Facial Attribute Recognition:
Investigating Synthetic Data and Vision Foundation Models [8.54530542456452]
車両の乗客の顔の特徴を認識する複雑なマルチタスクモデルを訓練するための合成データセットの有用性について検討する。
我々の研究は直感に反する発見を明らかにし、特に特定のマルチタスクコンテキストにおいて、ViTよりもResNetの方が優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-10T04:17:54Z) - DimVis: Interpreting Visual Clusters in Dimensionality Reduction With Explainable Boosting Machine [3.2748787252933442]
DimVisは、DRプロジェクションの解釈アシスタントとして、教師付きExplainable Boosting Machine(EBM)モデルを使用するツールである。
本ツールは,視覚的クラスタにおける特徴関連性の解釈を提供することにより,高次元データ解析を容易にする。
論文 参考訳(メタデータ) (2024-02-10T04:50:36Z) - UnProjection: Leveraging Inverse-Projections for Visual Analytics of
High-Dimensional Data [63.74032987144699]
提案するNNInvは,プロジェクションやマッピングの逆を近似する深層学習技術である。
NNInvは、2次元投影空間上の任意の点から高次元データを再構成することを学び、ユーザーは視覚分析システムで学習した高次元表現と対話することができる。
論文 参考訳(メタデータ) (2021-11-02T17:11:57Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
本稿では,データセットバイアスによる負の効果を軽減するために,新しい感情認識ネットワーク(IERN)を提案する。
IERNの有効性を検証する一連の設計されたテストと、3つの感情ベンチマークの実験は、IERNが他の最先端のアプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-07-26T10:40:59Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - Learning Multiplicative Interactions with Bayesian Neural Networks for
Visual-Inertial Odometry [44.209301916028124]
本稿では,視覚慣性オドメトリー(VIO)のためのエンドツーエンドマルチモーダル学習手法を提案する。
センサ劣化シナリオに照らして、センサの相補性を利用するように設計されている。
論文 参考訳(メタデータ) (2020-07-15T11:39:29Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
マルチタスク学習(MTL)技術は、性能、計算、メモリフットプリントに関する有望な結果を示している。
我々は、コンピュータビジョンにおけるMLLのための最先端のディープラーニングアプローチについて、よく理解された視点を提供する。
論文 参考訳(メタデータ) (2020-04-28T09:15:50Z) - Analyzing Visual Representations in Embodied Navigation Tasks [45.35107294831313]
我々は、最近提案されたプロジェクション重み付き正準相関解析(PWCCA)を用いて、異なるタスクを実行することで、同じ環境で学習した視覚的表現の類似度を測定する。
次に、あるタスクで学習した視覚的表現が、別のタスクに効果的に転送できることを実証的に示す。
論文 参考訳(メタデータ) (2020-03-12T19:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。