論文の概要: Correlation of Object Detection Performance with Visual Saliency and Depth Estimation
- arxiv url: http://arxiv.org/abs/2411.02844v1
- Date: Tue, 05 Nov 2024 06:34:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:01:56.802933
- Title: Correlation of Object Detection Performance with Visual Saliency and Depth Estimation
- Title(参考訳): 物体検出性能と視力の相関と深さ推定
- Authors: Matthias Bartolo, Dylan Seychell,
- Abstract要約: 本稿では,物体検出精度と,深度予測と視覚塩分率予測の2つの基本的な視覚的課題の相関について検討する。
分析の結果,これらの相関は対象のカテゴリ間で有意な変化を示し,相関値がより小さいオブジェクトの最大3倍も大きいことが判明した。
これらの結果から, 物体検出アーキテクチャに視覚的サリエンシ機能を組み込むことは, 深度情報よりも有益であることが示唆された。
- 参考スコア(独自算出の注目度): 0.09208007322096533
- License:
- Abstract: As object detection techniques continue to evolve, understanding their relationships with complementary visual tasks becomes crucial for optimising model architectures and computational resources. This paper investigates the correlations between object detection accuracy and two fundamental visual tasks: depth prediction and visual saliency prediction. Through comprehensive experiments using state-of-the-art models (DeepGaze IIE, Depth Anything, DPT-Large, and Itti's model) on COCO and Pascal VOC datasets, we find that visual saliency shows consistently stronger correlations with object detection accuracy (mA$\rho$ up to 0.459 on Pascal VOC) compared to depth prediction (mA$\rho$ up to 0.283). Our analysis reveals significant variations in these correlations across object categories, with larger objects showing correlation values up to three times higher than smaller objects. These findings suggest incorporating visual saliency features into object detection architectures could be more beneficial than depth information, particularly for specific object categories. The observed category-specific variations also provide insights for targeted feature engineering and dataset design improvements, potentially leading to more efficient and accurate object detection systems.
- Abstract(参考訳): オブジェクト検出技術が進化を続けるにつれて、モデルアーキテクチャや計算資源の最適化において、補完的な視覚的タスクとの関係を理解することが重要である。
本稿では,物体検出精度と,深度予測と視覚塩分率予測の2つの基本的な視覚的課題の相関について検討する。
最先端モデル(DeepGaze IIE, Depth Anything, DPT-Large, Itti's model)を用いたCOCOおよびPascal VOCデータセットの総合的な実験により、深度予測(mA$\rho$から0.283まで)と比較して、視覚的サリエンシは物体検出精度(mA$\rho$から0.459まで)と一貫して強い相関を示すことがわかった。
分析の結果,これらの相関は対象のカテゴリ間で有意な変化を示し,相関値がより小さいオブジェクトの最大3倍も大きいことが判明した。
これらの結果は、特に特定の対象カテゴリにおいて、深度情報よりも視覚的サリエンシ機能をオブジェクト検出アーキテクチャに組み込むことが有益であることを示唆している。
観察されたカテゴリ固有のバリエーションは、ターゲットとなる機能エンジニアリングとデータセット設計の改善に関する洞察を与え、より効率的で正確なオブジェクト検出システムをもたらす可能性がある。
関連論文リスト
- Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - On the Importance of Large Objects in CNN Based Object Detection
Algorithms [0.0]
すべてのサイズで重要な学習機能において、大きなオブジェクトの重要性を強調します。
大きな物体により多くの重みを与えると、全ての物体の大きさに対する検出スコアが向上することを示す。
論文 参考訳(メタデータ) (2023-11-20T12:32:32Z) - The Impact of Different Backbone Architecture on Autonomous Vehicle
Dataset [120.08736654413637]
バックボーンアーキテクチャによって抽出された特徴の質は、全体的な検出性能に大きな影響を与える可能性がある。
本研究は,KITTI,NuScenes,BDDの3つの自律走行車データセットを評価し,対象検出タスクにおける異なるバックボーンアーキテクチャの性能を比較した。
論文 参考訳(メタデータ) (2023-09-15T17:32:15Z) - Exploring Predicate Visual Context in Detecting Human-Object
Interactions [44.937383506126274]
クロスアテンションによる画像特徴の再導入について検討する。
PViCはHICO-DETおよびV-COCOベンチマークにおいて最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-08-11T15:57:45Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
この研究は、複数のデータセットからラベル空間の結合を予測する単一の視覚的関係検出器のトレーニングに焦点を当てている。
視覚と言語モデルを活用した統合視覚関係検出のための新しいボトムアップ手法UniVRDを提案する。
人物体間相互作用検出とシーングラフ生成の双方による実験結果から,本モデルの競合性能が示された。
論文 参考訳(メタデータ) (2023-03-16T00:06:28Z) - Object Detection in Aerial Images with Uncertainty-Aware Graph Network [61.02591506040606]
本稿では,ノードとエッジがオブジェクトによって表現される構造化グラフを用いた,新しい不確実性を考慮したオブジェクト検出フレームワークを提案する。
我々は我々のモデルをオブジェクトDETection(UAGDet)のための不確実性対応グラフネットワークと呼ぶ。
論文 参考訳(メタデータ) (2022-08-23T07:29:03Z) - Knowledge Distillation for Oriented Object Detection on Aerial Images [1.827510863075184]
本稿では,KD-RNetの知識蒸留による空中画像の回転物体検出のためのモデル圧縮手法を提案する。
大規模空中物体検出データセット(DOTA)による実験結果から,提案したKD-RNetモデルにより,パラメータ数を削減した平均値精度(mAP)が向上し,同時にKD-RNetは,基底アノテーションと高い重なり合う高品質検出を提供することで,性能を向上することを示した。
論文 参考訳(メタデータ) (2022-06-20T14:24:16Z) - Comprehensive Analysis of the Object Detection Pipeline on UAVs [16.071349046409885]
まず、リモートセンシングアプリケーションにおける7つのパラメータ(量子化、圧縮、解像度、色モデル、画像歪み、ガンマ補正、追加チャネル)の影響を実験的に分析する。
すべてのパラメータが検出精度とデータスループットに等しく影響を与えるわけではなく、パラメータ間の適切な妥協により、軽量物体検出モデルの検出精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-03-01T09:30:01Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
一つのホットアプローチで学習したクラス埋め込みの誤差統計と、自然言語処理や知識グラフから意味的に構造化された埋め込みを比較した。
本稿では,キーポイントベースおよびトランスフォーマーベースオブジェクト検出アーキテクチャの知識埋め込み設計を提案する。
論文 参考訳(メタデータ) (2021-12-21T17:10:21Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。