Citation Recommendation: Approaches and Datasets
- URL: http://arxiv.org/abs/2002.06961v2
- Date: Thu, 14 May 2020 08:01:27 GMT
- Title: Citation Recommendation: Approaches and Datasets
- Authors: Michael F\"arber, Adam Jatowt
- Abstract summary: Citation recommendation describes the task of recommending citations for a given text.
In recent years, several approaches and evaluation data sets have been presented.
No literature survey has been conducted explicitly on citation recommendation.
- Score: 20.47628019708079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Citation recommendation describes the task of recommending citations for a
given text. Due to the overload of published scientific works in recent years
on the one hand, and the need to cite the most appropriate publications when
writing scientific texts on the other hand, citation recommendation has emerged
as an important research topic. In recent years, several approaches and
evaluation data sets have been presented. However, to the best of our
knowledge, no literature survey has been conducted explicitly on citation
recommendation. In this article, we give a thorough introduction into automatic
citation recommendation research. We then present an overview of the approaches
and data sets for citation recommendation and identify differences and
commonalities using various dimensions. Last but not least, we shed light on
the evaluation methods, and outline general challenges in the evaluation and
how to meet them. We restrict ourselves to citation recommendation for
scientific publications, as this document type has been studied the most in
this area. However, many of the observations and discussions included in this
survey are also applicable to other types of text, such as news articles and
encyclopedic articles.
Related papers
- ILCiteR: Evidence-grounded Interpretable Local Citation Recommendation [31.259805200946175]
We introduce the evidence-grounded local citation recommendation task, where the target latent space comprises evidence spans for recommending specific papers.
Unlike past formulations that simply output recommendations, ILCiteR retrieves ranked lists of evidence span and recommended paper pairs.
We contribute a novel dataset for the evidence-grounded local citation recommendation task and demonstrate the efficacy of our proposed conditional neural rank-ensembling approach for re-ranking evidence spans.
arXiv Detail & Related papers (2024-03-13T17:38:05Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
This paper proposes several article-level, field-normalized, and large language model-empowered bibliometric indicators to evaluate reviews.
The newly emerging AI-generated literature reviews are also appraised.
This work offers insights into the current challenges of literature reviews and envisions future directions for their development.
arXiv Detail & Related papers (2024-02-20T11:28:50Z) - Impression-Aware Recommender Systems [57.38537491535016]
Novel data sources bring new opportunities to improve the quality of recommender systems.
Researchers may use impressions to refine user preferences and overcome the current limitations in recommender systems research.
We present a systematic literature review on recommender systems using impressions.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - Tag-Aware Document Representation for Research Paper Recommendation [68.8204255655161]
We propose a hybrid approach that leverages deep semantic representation of research papers based on social tags assigned by users.
The proposed model is effective in recommending research papers even when the rating data is very sparse.
arXiv Detail & Related papers (2022-09-08T09:13:07Z) - Towards generating citation sentences for multiple references with
intent control [86.53829532976303]
We build a novel generation model with the Fusion-in-Decoder approach to cope with multiple long inputs.
Experiments demonstrate that the proposed approaches provide much more comprehensive features for generating citation sentences.
arXiv Detail & Related papers (2021-12-02T15:32:24Z) - Enhancing Scientific Papers Summarization with Citation Graph [78.65955304229863]
We redefine the task of scientific papers summarization by utilizing their citation graph.
We construct a novel scientific papers summarization dataset Semantic Scholar Network (SSN) which contains 141K research papers in different domains.
Our model can achieve competitive performance when compared with the pretrained models.
arXiv Detail & Related papers (2021-04-07T11:13:35Z) - Chronological Citation Recommendation with Time Preference [20.179186544131337]
This paper predicts the time preference based on user queries, which is a probability distribution of citing papers published in different time slices.
We use this time preference to re-rank the initial citation list obtained by content-based filtering.
arXiv Detail & Related papers (2021-01-19T13:18:05Z) - A Decade of In-text Citation Analysis based on Natural Language
Processing and Machine Learning Techniques: An overview of empirical studies [3.474275085556876]
Information scientists have gone far beyond traditional bibliometrics by tapping into advancements in full-text data processing techniques.
This article aims to narratively review the studies on these developments.
Its primary focus is on publications that have used natural language processing and machine learning techniques to analyse citations.
arXiv Detail & Related papers (2020-08-29T17:27:08Z) - Learning Neural Textual Representations for Citation Recommendation [7.227232362460348]
We propose a novel approach to citation recommendation using a deep sequential representation of the documents (Sentence-BERT) cascaded with Siamese and triplet networks in a submodular scoring function.
To the best of our knowledge, this is the first approach to combine deep representations and submodular selection for a task of citation recommendation.
arXiv Detail & Related papers (2020-07-08T12:38:50Z) - Context-Based Quotation Recommendation [60.93257124507105]
We propose a novel context-aware quote recommendation system.
It generates a ranked list of quotable paragraphs and spans of tokens from a given source document.
We conduct experiments on a collection of speech transcripts and associated news articles.
arXiv Detail & Related papers (2020-05-17T17:49:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.