論文の概要: Learning to Prove Theorems by Learning to Generate Theorems
- arxiv url: http://arxiv.org/abs/2002.07019v2
- Date: Fri, 30 Oct 2020 04:33:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 11:41:08.883408
- Title: Learning to Prove Theorems by Learning to Generate Theorems
- Title(参考訳): 定理生成の学習による定理証明の学習
- Authors: Mingzhe Wang, Jia Deng
- Abstract要約: 我々は、定理証明器を訓練するために、定理と証明を自動的に合成するニューラルジェネレータを学習する。
実世界の課題に関する実験は、我々の手法による合成データが定理証明器を改善することを示した。
- 参考スコア(独自算出の注目度): 71.46963489866596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the task of automated theorem proving, a key AI task. Deep
learning has shown promise for training theorem provers, but there are limited
human-written theorems and proofs available for supervised learning. To address
this limitation, we propose to learn a neural generator that automatically
synthesizes theorems and proofs for the purpose of training a theorem prover.
Experiments on real-world tasks demonstrate that synthetic data from our
approach improves the theorem prover and advances the state of the art of
automated theorem proving in Metamath. Code is available at
https://github.com/princeton-vl/MetaGen.
- Abstract(参考訳): 我々は、AIの重要な課題である自動定理証明の課題を考える。
深層学習は、トレーニング定理証明者にとって有望であるが、教師付き学習に利用可能な人間による定理や証明は限られている。
この制限に対処するため,定理証明器を訓練するために,定理と証明を自動的に合成するニューラルジェネレータを提案する。
実世界の課題に関する実験は、この手法による合成データが定理証明器を改良し、メタ数学における自動定理証明技術の進歩を示すものである。
コードはhttps://github.com/princeton-vl/MetaGenで入手できる。
関連論文リスト
- Lean-STaR: Learning to Interleave Thinking and Proving [53.923617816215774]
証明の各ステップに先立って,非公式な思考を生成するために,言語モデルをトレーニングするフレームワークであるLean-STaRを紹介します。
Lean-STaRは、Lean定理証明環境内のminiF2F-testベンチマークで最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-07-14T01:43:07Z) - ATG: Benchmarking Automated Theorem Generation for Generative Language Models [83.93978859348313]
人間はより広範に複雑な数学的結果を探求するために新しい定理を開発することができる。
現在の生成言語モデル(LM)は、定理の自動証明において著しく改善されている。
本稿では,エージェントが価値ある(あるいは新しい)定理を自動生成できるかどうかを評価する自動定理生成ベンチマークを提案する。
論文 参考訳(メタデータ) (2024-05-05T02:06:37Z) - REFACTOR: Learning to Extract Theorems from Proofs [29.44286369265644]
我々は、REFACTORが、人間が証明を書くのに使用する定理の19.6%を抽出できることを示した。
新たに抽出された定理により,既存のMetaMathデータベースが構築可能であることを示す。
また、新理論データセットでトレーニングされた証明者が、より多くのテスト定理を証明し、最先端のベースラインを上回ることを実証する。
論文 参考訳(メタデータ) (2024-02-26T21:21:30Z) - TheoremQA: A Theorem-driven Question Answering dataset [100.39878559382694]
GPT-4のこれらの問題を解決する能力は非並列であり、Program-of-Thoughts Promptingの精度は51%である。
TheoremQAは、350の定理をカバーする800の高品質な質問を含むドメインの専門家によってキュレートされる。
論文 参考訳(メタデータ) (2023-05-21T17:51:35Z) - Graph Contrastive Pre-training for Effective Theorem Reasoning [6.721845345130468]
既存の手法は、人間の専門家による証明から深層ニューラルネットワークに基づくモデルを学ぶことによって、戦術予測の有望な結果を示す。
本稿では,定理証明のための表現学習の改善に着目した新しい拡張であるNeuroTacticを提案する。
論文 参考訳(メタデータ) (2021-08-24T16:14:54Z) - Training a First-Order Theorem Prover from Synthetic Data [50.23600875138756]
自動定理証明に機械学習を適用する際の大きな課題は、トレーニングデータの不足である。
本稿では,人間のデータを公理によらずに,純粋に合成生成定理をトレーニングする手法を提案する。
私達の神経証明者は時間および検索のステップのこの総合的なデータで最先端のE-proverを上回っます。
論文 参考訳(メタデータ) (2021-03-05T17:01:34Z) - Generative Language Modeling for Automated Theorem Proving [94.01137612934842]
この研究は、自動定理プロバーの人間に対する大きな制限が言語モデルから生成することで対処できる可能性によって動機づけられている。
本稿ではメタマス形式化言語のための自動証明と証明アシスタント GPT-f を提案し,その性能を解析する。
論文 参考訳(メタデータ) (2020-09-07T19:50:10Z) - Learning to Prove from Synthetic Theorems [41.74768503409581]
自動定理証明に機械学習を適用する上での大きな課題は、トレーニングデータの不足である。
本稿では,一組の公理から生成される合成定理による学習に依存するアプローチを提案する。
このような定理が自動証明器の訓練に利用でき、学習された証明器が人間の生成した定理にうまく移行できることが示される。
論文 参考訳(メタデータ) (2020-06-19T17:48:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。