論文の概要: GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction
- arxiv url: http://arxiv.org/abs/2002.07236v1
- Date: Mon, 17 Feb 2020 20:21:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 11:39:47.995588
- Title: GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction
- Title(参考訳): GACEM:マルチモーダルブラックボックス制約満足度のための一般化自己回帰クロスエントロピー法
- Authors: Kourosh Hakhamaneshi, Keertana Settaluri, Pieter Abbeel, Vladimir
Stojanovic
- Abstract要約: 本稿では,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を提案する。
我々のアルゴリズムは複雑な解空間を表現でき、様々な異なる解領域を追跡できる。
- 参考スコア(独自算出の注目度): 69.94831587339539
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we present a new method of black-box optimization and constraint
satisfaction. Existing algorithms that have attempted to solve this problem are
unable to consider multiple modes, and are not able to adapt to changes in
environment dynamics. To address these issues, we developed a modified
Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network
for modeling uniform distributions over the solution space. We train the model
using maximum entropy policy gradient methods from Reinforcement Learning. Our
algorithm is able to express complicated solution spaces, thus allowing it to
track a variety of different solution regions. We empirically compare our
algorithm with variations of CEM, including one with a Gaussian prior with
fixed variance, and demonstrate better performance in terms of: number of
diverse solutions, better mode discovery in multi-modal problems, and better
sample efficiency in certain cases.
- Abstract(参考訳): 本稿では,ブラックボックス最適化と制約満足度の新しい手法を提案する。
この問題を解決しようとする既存のアルゴリズムは、複数のモードを考えることができず、環境力学の変化に適応できない。
これらの問題に対処するために,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を開発した。
強化学習から最大エントロピーポリシー勾配法を用いてモデルを訓練する。
我々のアルゴリズムは複雑な解空間を表現することができ、様々な解領域を追跡することができる。
提案アルゴリズムとCEMの変種を実証的に比較し, ガウス事前の変分を含むアルゴリズムを定式化することにより, 多様な解の数, マルチモーダル問題におけるモード発見の精度, サンプル効率の向上など, より優れた性能を示す。
関連論文リスト
- A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
最適制御(SOC)における一般問題の解法のためのシミュレーションフリーアルゴリズムを提案する。
既存の手法とは異なり、我々の手法は随伴問題の解を必要としない。
論文 参考訳(メタデータ) (2024-10-07T16:16:53Z) - Towards Geometry-Aware Pareto Set Learning for Neural Multi-Objective Combinatorial Optimization [19.631213689157995]
多目的多様性最適化(MOCO)問題は、様々な現実世界の応用で広く用いられている。
既存のほとんどのニューラルMOCO法は、MOCO問題を一連のSinge-Objective diversity enhancement (SOCO)問題に変換するために問題に依存する。
これらの手法はしばしば、不明瞭で時間を要する正確な超体積計算のため、前面の部分領域を近似する。
論文 参考訳(メタデータ) (2024-05-14T13:42:19Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
本稿では, PPOアルゴリズムの簡単な拡張により, TMDPにおけるポリシー勾配に対する新しいアルゴリズムを提案する。
シミュレーションと実ロボットの両方の目的を任意に並べた実世界の多目的ナビゲーション問題に対して,これを実証する。
論文 参考訳(メタデータ) (2022-09-15T07:22:58Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
一般的な問題を解決するための適応アルゴリズムのための普遍的な枠組みを設計することが望まれる。
特に,本フレームワークは,非収束的設定支援の下で適応的手法を提供する。
論文 参考訳(メタデータ) (2021-06-15T15:16:28Z) - Deep Reinforcement Learning for Field Development Optimization [0.0]
本研究の目的は,畳み込みニューラルネットワーク(CNN)深部強化学習(DRL)アルゴリズムをフィールド開発最適化問題に適用することである。
近似ポリシー最適化 (PPO) アルゴリズムは2つのCNNアーキテクチャで様々な層と構成を持つ。
両ネットワークは、ハイブリッド粒子群最適化(PSO-MADS)アルゴリズムと比較して満足な結果をもたらすポリシーを得た。
論文 参考訳(メタデータ) (2020-08-05T06:26:13Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
複数の異なる損失を最小化しなければならない最適化問題を考える。
提案手法は、各イテレーションにおける降下方向を計算し、目的関数の相対的減少を等しく保証する。
論文 参考訳(メタデータ) (2020-07-14T09:50:33Z) - Discovering Representations for Black-box Optimization [73.59962178534361]
ブラックボックス最適化符号化は手作業で行うのではなく,自動的に学習可能であることを示す。
学習された表現は、標準的なMAP-Elitesよりも桁違いに少ない評価で高次元の問題を解くことができることを示す。
論文 参考訳(メタデータ) (2020-03-09T20:06:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。