Experimental study and pratical realization of a reconciliation method
for quantum key distribution system
- URL: http://arxiv.org/abs/2002.07396v1
- Date: Sun, 16 Feb 2020 21:40:36 GMT
- Title: Experimental study and pratical realization of a reconciliation method
for quantum key distribution system
- Authors: Nedra Benletaief and Houria Rezig and Ammar Bouallegue
- Abstract summary: This paper investigates a reconciliation method in order to establish an errorless secret key in a QKD protocol.
The proposed method accomplishes reconciliation by using QTC in the special problem of sideinformation source coding.
- Score: 0.22099217573031674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates a reconciliation method in order to establish an
errorless secret key in a QKD protocol. Classical key distribution protocols
are no longer unconditionally secure because computational complexity of
mathematical problems forced hardships. In this context, QKD protocols offer a
highest level of security because they are based on the quantum laws of
physics. But, the protocol performances can be lowered by multiples errors. It
appears clearly that reconciliation should be performed in such a situation in
order to remove the errors as for the legitimate partners. The proposed method
accomplishes reconciliation by using QTC in the special problem of
sideinformation source coding (Slepian-Wolf coding model). Our theoretical
hypothesis are sustained by experimental results that confirm the advantage of
our method in resolving reconciliation problem compared to a recent related
work. Indeed, the integration of our method generates an important progess in
security and a large decrease of the QBER. The gain is obtained with a
reasonable complexity increase. Also, the novelty of our work is that it tested
the reconciliation method on a real photonic system under VPItransmissionMaker.
Related papers
- Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Secret extraction attacks against obfuscated IQP circuits [0.92463347238923]
In 2008, Shepherd and Bremner proposed a protocol in which a verifier constructs a unitary from the comparatively easy-to-implement family of IQP circuits.
The challenge problem is designed to contain an obfuscated secret, which can be turned into a statistical test.
Kahanamoku-Meyer found an efficient classical secret extraction attack.
Bremner, Cheng, and Ji very recently followed up by constructing a wide-ranging generalization of the original protocol.
arXiv Detail & Related papers (2023-12-15T19:08:35Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Security analysis method for practical quantum key distribution with
arbitrary encoding schemes [7.321809883860193]
We propose a security analysis method without restriction on encoding schemes.
We illustrate its ability by analyzing source flaws and a high-dimensional asymmetric protocol.
Our work has the potential to become a reference standard for the security analysis of practical QKD.
arXiv Detail & Related papers (2021-09-10T09:53:33Z) - Unbalanced-basis-misalignment tolerant measurement-device-independent
quantum key distribution [22.419105320267523]
Measurement-device-independent quantum key distribution (MDIQKD) is a revolutionary protocol since it is physically immune to all attacks on the detection side.
Some protocols release part of the assumptions in the encoding system to keep the practical security, but the performance would be dramatically reduced.
We present a MDIQKD protocol that requires less knowledge of encoding system to combat the troublesome modulation errors and fluctuations.
arXiv Detail & Related papers (2021-08-27T02:16:20Z) - Shannon theory for quantum systems and beyond: information compression
for fermions [68.8204255655161]
We show that entanglement fidelity in the fermionic case is capable of evaluating the preservation of correlations.
We introduce a fermionic version of the source coding theorem showing that, as in the quantum case, the von Neumann entropy is the minimal rate for which a fermionic compression scheme exists.
arXiv Detail & Related papers (2021-06-09T10:19:18Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Experimental study of continuous variable quantum key distribution [0.22099217573031674]
main technological factors limiting the communication rates of quantum cryptography systems by single photon are mainly related to the choice of the encoding method.
We propose a new reconciliation method based on Turbo codes.
Our method leads to a significant improvement of the protocol security and a large decrease of the QBER.
arXiv Detail & Related papers (2020-02-16T21:50:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.