A Hybrid Quantum-Classical Algorithm for Robust Fitting
- URL: http://arxiv.org/abs/2201.10110v1
- Date: Tue, 25 Jan 2022 05:59:24 GMT
- Title: A Hybrid Quantum-Classical Algorithm for Robust Fitting
- Authors: Anh-Dzung Doan and Michele Sasdelli and Tat-Jun Chin and David Suter
- Abstract summary: We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
- Score: 47.42391857319388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fitting geometric models onto outlier contaminated data is provably
intractable. Many computer vision systems rely on random sampling heuristics to
solve robust fitting, which do not provide optimality guarantees and error
bounds. It is therefore critical to develop novel approaches that can bridge
the gap between exact solutions that are costly, and fast heuristics that offer
no quality assurances. In this paper, we propose a hybrid quantum-classical
algorithm for robust fitting. Our core contribution is a novel robust fitting
formulation that solves a sequence of integer programs and terminates with a
global solution or an error bound. The combinatorial subproblems are amenable
to a quantum annealer, which helps to tighten the bound efficiently. While our
usage of quantum computing does not surmount the fundamental intractability of
robust fitting, by providing error bounds our algorithm is a practical
improvement over randomised heuristics. Moreover, our work represents a
concrete application of quantum computing in computer vision. We present
results obtained using an actual quantum computer (D-Wave Advantage) and via
simulation. Source code: https://github.com/dadung/HQC-robust-fitting
Related papers
- A quantum annealing approach to the minimum distance problem of quantum codes [0.0]
We introduce an approach to compute the minimum distance of quantum stabilizer codes by reformulating the problem as a Quadratic Unconstrained Binary Optimization problem.
We demonstrate practical viability of our method by comparing the performance of purely classical algorithms with the D-Wave Advantage 4.1 quantum annealer.
arXiv Detail & Related papers (2024-04-26T21:29:42Z) - Performant near-term quantum combinatorial optimization [1.1999555634662633]
We present a variational quantum algorithm for solving optimization problems with linear-depth circuits.
Our algorithm uses an ansatz composed of Hamiltonian generators designed to control each term in the target quantum function.
We conclude our performant and resource-minimal approach is a promising candidate for potential quantum computational advantages.
arXiv Detail & Related papers (2024-04-24T18:49:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Optimization of Robot Trajectory Planning with Nature-Inspired and
Hybrid Quantum Algorithms [0.0]
We solve robot trajectory planning problems at industry-relevant scales.
Our end-to-end solution integrates highly versatile random-key algorithms with model stacking and ensemble techniques.
We show how the latter can be integrated into our larger pipeline, providing a quantum-ready hybrid solution to the problem.
arXiv Detail & Related papers (2022-06-08T02:38:32Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
In this work, we investigate the verification of ReLU networks, which involves solving a robustness many-variable mixed-integer programs (MIPs)
To alleviate this issue, we propose to use QC for neural network verification and introduce a hybrid quantum procedure to compute provable certificates.
We show that, in a simulated environment, our certificate is sound, and provide bounds on the minimum number of qubits necessary to approximate the problem.
arXiv Detail & Related papers (2022-05-02T13:23:56Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Quantum Computing for Artificial Intelligence Based Mobile Network
Optimization [0.0]
We discuss how certain radio access network optimization problems can be modelled using the concept of constraint satisfaction problems in artificial intelligence.
As a case study, we discuss root sequence index (RSI) assignment problem - an important LTE/NR physical random access channel configuration related automation use-case.
We formulate RSI assignment as quadratic unconstrained binary optimization (QUBO) problem constructed using data ingested from a commercial mobile network, and solve it using a cloud-based commercially available quantum computing platform.
arXiv Detail & Related papers (2021-06-26T01:05:43Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.