Many-Body Physics with Individually-Controlled Rydberg Atoms
- URL: http://arxiv.org/abs/2002.07413v1
- Date: Tue, 18 Feb 2020 07:26:05 GMT
- Title: Many-Body Physics with Individually-Controlled Rydberg Atoms
- Authors: Antoine Browaeys and Thierry Lahaye
- Abstract summary: Systems of individually-controlled neutral atoms, interacting with each other when excited to Rydberg states, have emerged as a promising platform for quantum simulation of many-body problems.
We review the techniques underlying quantum gas microscopes and arrays of optical tweezers used in these experiments, explain how the different types of interactions between Rydberg atoms allow a natural mapping onto various quantum spin models, and describe recent results that were obtained with this platform to study quantum many-body physics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the last decade, systems of individually-controlled neutral atoms,
interacting with each other when excited to Rydberg states, have emerged as a
promising platform for quantum simulation of many-body problems, in particular
spin systems. Here, we review the techniques underlying quantum gas microscopes
and arrays of optical tweezers used in these experiments, explain how the
different types of interactions between Rydberg atoms allow a natural mapping
onto various quantum spin models, and describe recent results that were
obtained with this platform to study quantum many-body physics.
Related papers
- Novel ground states and emergent quantum many-body scars in a two-species Rydberg atom array [9.501699961650854]
Rydberg atom array has been established as one appealing platform for quantum simulation and quantum computation.
Recent development of trapping and controlling two-species atoms using optical tweezer arrays has brought more complex interactions.
We find some novel quantum states that cannot exist in traditional cold-atom platforms.
arXiv Detail & Related papers (2024-08-28T17:36:10Z) - Quantum thermalization and Floquet engineering in a spin ensemble with a clock transition [3.55103790558995]
We study an optically addressable solid-state spin system comprising a strongly interacting ensemble of millions of ytterbium-171 ions in a crystal.
Our findings indicate that an ensemble of rare-earth ions serves as a versatile testbed for many-body physics and offers valuable insights for advancing quantum technologies.
arXiv Detail & Related papers (2024-08-01T03:16:25Z) - Rydberg superatoms: An artificial quantum system for quantum information processing and quantum optics [3.353420233863688]
Rydberg excitations display intriguing collective effects mediated by their strong, long-range dipole-dipole interactions.
These collective effects have gained significant attention across various fields due to their potential applications in quantum information processing and quantum optics.
arXiv Detail & Related papers (2024-04-08T09:17:56Z) - Quantum simulation of generic spin exchange models in Floquet-engineered
Rydberg atom arrays [0.0]
We propose a new route towards simulating generic spin exchange Hamiltonians in atom arrays.
We numerically investigate the generation of several spin exchange models which have yet to be realized in atom arrays.
arXiv Detail & Related papers (2023-06-12T11:40:29Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Long-range electron-electron interactions in quantum dot systems and
applications in quantum chemistry [0.487576911714538]
Long-range interactions play a key role in several phenomena of quantum physics and chemistry.
We present the first detailed experimental characterization of long-range electron-electron interactions in an array of gate-defined semiconductor quantum dots.
Based on these findings, we investigate how long-range interactions in quantum-dot arrays may be utilized for analog simulations of artificial quantum matter.
arXiv Detail & Related papers (2022-02-14T14:25:04Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.