A Modified Perturbed Sampling Method for Local Interpretable
Model-agnostic Explanation
- URL: http://arxiv.org/abs/2002.07434v1
- Date: Tue, 18 Feb 2020 09:03:10 GMT
- Title: A Modified Perturbed Sampling Method for Local Interpretable
Model-agnostic Explanation
- Authors: Sheng Shi, Xinfeng Zhang, Wei Fan
- Abstract summary: Local Interpretable Model-agnostic Explanation (LIME) is a technique that explains the predictions of any classifier faithfully.
This paper proposes a novel Modified Perturbed Sampling operation for LIME (MPS-LIME)
In image classification, MPS-LIME converts the superpixel image into an undirected graph.
- Score: 35.281127405430674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainability is a gateway between Artificial Intelligence and society as
the current popular deep learning models are generally weak in explaining the
reasoning process and prediction results. Local Interpretable Model-agnostic
Explanation (LIME) is a recent technique that explains the predictions of any
classifier faithfully by learning an interpretable model locally around the
prediction. However, the sampling operation in the standard implementation of
LIME is defective. Perturbed samples are generated from a uniform distribution,
ignoring the complicated correlation between features. This paper proposes a
novel Modified Perturbed Sampling operation for LIME (MPS-LIME), which is
formalized as the clique set construction problem. In image classification,
MPS-LIME converts the superpixel image into an undirected graph. Various
experiments show that the MPS-LIME explanation of the black-box model achieves
much better performance in terms of understandability, fidelity, and
efficiency.
Related papers
- Ensemble based approach to quantifying uncertainty of LLM based classifications [1.6231286831423648]
Finetuning the model results in reducing the sensitivity of the model output to the lexical input variations.
A probabilistic method is proposed for estimating the certainties of the predicted classes.
arXiv Detail & Related papers (2025-02-12T18:42:42Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Predicting the Performance of Black-box LLMs through Self-Queries [60.87193950962585]
Large language models (LLMs) are increasingly relied on in AI systems, predicting when they make mistakes is crucial.
In this paper, we extract features of LLMs in a black-box manner by using follow-up prompts and taking the probabilities of different responses as representations.
We demonstrate that training a linear model on these low-dimensional representations produces reliable predictors of model performance at the instance level.
arXiv Detail & Related papers (2025-01-02T22:26:54Z) - CLIMAX: An exploration of Classifier-Based Contrastive Explanations [5.381004207943597]
We propose a novel post-hoc model XAI technique that provides contrastive explanations justifying the classification of a black box.
Our method, which we refer to as CLIMAX, is based on local classifiers.
We show that we achieve better consistency as compared to baselines such as LIME, BayLIME, and SLIME.
arXiv Detail & Related papers (2023-07-02T22:52:58Z) - Efficient Propagation of Uncertainty via Reordering Monte Carlo Samples [0.7087237546722617]
Uncertainty propagation is a technique to determine model output uncertainties based on the uncertainty in its input variables.
In this work, we investigate the hypothesis that while all samples are useful on average, some samples must be more useful than others.
We introduce a methodology to adaptively reorder MC samples and show how it results in reduction of computational expense of UP processes.
arXiv Detail & Related papers (2023-02-09T21:28:15Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Locally Interpretable Model Agnostic Explanations using Gaussian
Processes [2.9189409618561966]
Local Interpretable Model-Agnostic Explanations (LIME) is a popular technique for explaining the prediction of a single instance.
We propose a Gaussian Process (GP) based variation of locally interpretable models.
We demonstrate that the proposed technique is able to generate faithful explanations using much fewer samples as compared to LIME.
arXiv Detail & Related papers (2021-08-16T05:49:01Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - MeLIME: Meaningful Local Explanation for Machine Learning Models [2.819725769698229]
We show that our approach, MeLIME, produces more meaningful explanations compared to other techniques over different ML models.
MeLIME generalizes the LIME method, allowing more flexible perturbation sampling and the use of different local interpretable models.
arXiv Detail & Related papers (2020-09-12T16:06:58Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
In this article a new kind of interpretable machine learning method is presented.
It can help to understand the partitioning of the feature space into predicted classes in a classification model using quantile shifts.
Basically, real data points (or specific points of interest) are used and the changes of the prediction after slightly raising or decreasing specific features are observed.
arXiv Detail & Related papers (2020-09-11T16:35:53Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.