論文の概要: Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks
- arxiv url: http://arxiv.org/abs/2002.07631v1
- Date: Mon, 17 Feb 2020 07:54:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 12:43:00.869300
- Title: Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks
- Title(参考訳): グラフニューラルネットワークの相反最適化によるワイヤレス電力制御
- Authors: Navid Naderializadeh, Mark Eisen, Alejandro Ribeiro
- Abstract要約: 本稿では,無線ネットワークにおけるダウンリンク電力制御の問題点について考察する。
コンカレントトランスミッション間の干渉を軽減するために,ネットワークトポロジを活用してグラフニューラルネットワークアーキテクチャを構築する。
次に、教師なし原始対実対実最適化手法を用いて最適電力配分決定を学習する。
- 参考スコア(独自算出の注目度): 124.89036526192268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of downlink power control in wireless networks,
consisting of multiple transmitter-receiver pairs communicating with each other
over a single shared wireless medium. To mitigate the interference among
concurrent transmissions, we leverage the network topology to create a graph
neural network architecture, and we then use an unsupervised primal-dual
counterfactual optimization approach to learn optimal power allocation
decisions. We show how the counterfactual optimization technique allows us to
guarantee a minimum rate constraint, which adapts to the network size, hence
achieving the right balance between average and $5^{th}$ percentile user rates
throughout a range of network configurations.
- Abstract(参考訳): 本稿では,無線ネットワークにおけるダウンリンク電力制御の問題点について考察する。
コンカレントトランスミッション間の干渉を軽減するために,ネットワークトポロジを活用してグラフニューラルネットワークアーキテクチャを構築し,教師なしの原始二重対実最適化手法を用いて最適電力配分決定を学習する。
提案手法は,ネットワークサイズに適応した最小レート制約を保証し,ネットワーク構成全体を通じて平均と5,5,5,4,500ドルのパーセンタイルユーザレートの適切なバランスを実現する方法を示す。
関連論文リスト
- Adaptive Genetic Selection based Pinning Control with Asymmetric Coupling for Multi-Network Heterogeneous Vehicular Systems [8.454856509502733]
本稿では,異種マルチネットワーク車載アドホックネットワーク(VANET)のためのピンニング制御手法を提案する。
まず、単一および複数ネットワーク条件下でのピンニング制御戦略の安定性を証明し、厳密な理論基盤を確立する。
本理論に基づいて,最適ピンニングノードの選択に適した適応型遺伝的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-05T11:49:26Z) - GNN-Based Joint Channel and Power Allocation in Heterogeneous Wireless Networks [9.031738020845586]
本稿では、異種無線ネットワークにおける共同資源配分問題に対処するGNNに基づくアルゴリズムを提案する。
提案アルゴリズムは,従来の最適化アルゴリズムと比較して高い計算効率で良好な性能を実現する。
論文 参考訳(メタデータ) (2024-07-28T04:51:00Z) - Multi-Flow Transmission in Wireless Interference Networks: A Convergent
Graph Learning Approach [9.852567834643292]
ネットワークデータ信号の2段階干渉対応マルチフロー最適化(DIAMOND)という新しいアルゴリズムを提案する。
集中型ステージは、グラフニューラルネットワーク(GNN)強化学習(RL)ルーティングエージェントの新しい設計を用いて、マルチフロー伝送戦略を計算する。
そして、分散学習更新の新しい設計に基づいて、分散ステージにより性能が向上する。
論文 参考訳(メタデータ) (2023-03-27T18:49:47Z) - Graph Neural Networks for Power Allocation in Wireless Networks with
Full Duplex Nodes [10.150768420975155]
ユーザ間の相互干渉のため、無線ネットワークにおける電力割り当て問題はしばしば自明ではない。
グラフグラフニューラルネットワーク(GNN)は、これらの問題に対処するための有望なアプローチとして最近登場し、無線ネットワークの基盤となるトポロジを活用するアプローチである。
論文 参考訳(メタデータ) (2023-03-27T10:59:09Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
モバイルネットワークの規模は、手作業による介入や手作業による戦略を使ってアンテナパラメータの最適化を困難にしている。
本研究では,モバイルネットワーク構成をグローバルに最適化するマルチエージェント強化学習アルゴリズムを提案する。
シミュレーション環境におけるアンテナ傾き調整問題とジョイント傾き・電力制御問題に対するアルゴリズムの性能を実証的に示す。
論文 参考訳(メタデータ) (2023-01-20T17:06:34Z) - Learning Resilient Radio Resource Management Policies with Graph Neural
Networks [124.89036526192268]
我々は、ユーザ当たりの最小容量制約でレジリエントな無線リソース管理問題を定式化する。
有限個のパラメータ集合を用いてユーザ選択と電力制御ポリシーをパラメータ化できることを示す。
このような適応により,提案手法は平均レートと5番目のパーセンタイルレートとの良好なトレードオフを実現する。
論文 参考訳(メタデータ) (2022-03-07T19:40:39Z) - IoV Scenario: Implementation of a Bandwidth Aware Algorithm in Wireless
Network Communication Mode [49.734868032441625]
本稿では,マルチドメイン仮想ネットワーク埋め込みアルゴリズム(BA-VNE)を提案する。
このアルゴリズムは主に、ユーザが無線通信モードで多くの帯域幅を必要とする問題を対象としている。
本アルゴリズムの性能向上のために,粒子群最適化(PSO)アルゴリズムを導入する。
論文 参考訳(メタデータ) (2022-02-03T03:34:06Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - Deep Learning for Radio Resource Allocation with Diverse
Quality-of-Service Requirements in 5G [53.23237216769839]
本研究では,基地局の最適資源配分ポリシーを近似するディープラーニングフレームワークを開発する。
完全接続ニューラルネットワーク(NN)は,近似誤差とサブキャリア数の量子化誤差により,要求を完全に保証できないことがわかった。
無線チャネルの分布と無線ネットワークにおけるサービスのタイプが定常的でないことを考慮し,非定常的無線ネットワークにおけるNNの更新にディープトランスファー学習を適用した。
論文 参考訳(メタデータ) (2020-03-29T04:48:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。