論文の概要: Adaptive Genetic Selection based Pinning Control with Asymmetric Coupling for Multi-Network Heterogeneous Vehicular Systems
- arxiv url: http://arxiv.org/abs/2411.03027v1
- Date: Tue, 05 Nov 2024 11:49:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:00:09.583863
- Title: Adaptive Genetic Selection based Pinning Control with Asymmetric Coupling for Multi-Network Heterogeneous Vehicular Systems
- Title(参考訳): 適応型遺伝的選択型ピンニング制御と非対称結合
- Authors: Weian Guo, Ruizhi Sha, Li Li, Lun Zhang, Dongyang Li,
- Abstract要約: 本稿では,異種マルチネットワーク車載アドホックネットワーク(VANET)のためのピンニング制御手法を提案する。
まず、単一および複数ネットワーク条件下でのピンニング制御戦略の安定性を証明し、厳密な理論基盤を確立する。
本理論に基づいて,最適ピンニングノードの選択に適した適応型遺伝的アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 8.454856509502733
- License:
- Abstract: To alleviate computational load on RSUs and cloud platforms, reduce communication bandwidth requirements, and provide a more stable vehicular network service, this paper proposes an optimized pinning control approach for heterogeneous multi-network vehicular ad-hoc networks (VANETs). In such networks, vehicles participate in multiple task-specific networks with asymmetric coupling and dynamic topologies. We first establish a rigorous theoretical foundation by proving the stability of pinning control strategies under both single and multi-network conditions, deriving sufficient stability conditions using Lyapunov theory and linear matrix inequalities (LMIs). Building on this theoretical groundwork, we propose an adaptive genetic algorithm tailored to select optimal pinning nodes, effectively balancing LMI constraints while prioritizing overlapping nodes to enhance control efficiency. Extensive simulations across various network scales demonstrate that our approach achieves rapid consensus with a reduced number of control nodes, particularly when leveraging network overlaps. This work provides a comprehensive solution for efficient control node selection in complex vehicular networks, offering practical implications for deploying large-scale intelligent transportation systems.
- Abstract(参考訳): RSUやクラウドプラットフォーム上での計算負荷を軽減し、通信帯域幅の要求を低減し、より安定した車載ネットワークサービスを提供するために、異種マルチネットワーク車載アドホックネットワーク(VANET)のためのピンニング制御手法を提案する。
このようなネットワークでは、車両は非対称結合と動的トポロジーを持つ複数のタスク固有ネットワークに参加する。
まず、Lyapunov理論と線形行列不等式(LMIs)を用いて、単一および複数ネットワーク条件下でのピンニング制御戦略の安定性を証明し、厳密な理論基盤を確立する。
この理論に基づいて、最適ピンニングノードの選択に適した適応型遺伝的アルゴリズムを提案し、重なり合うノードを優先順位付けしながらLMI制約を効果的にバランスさせ、制御効率を向上させる。
ネットワークスケールの大規模なシミュレーションにより,ネットワークの重なりを利用する場合,制御ノード数が減少し,高速なコンセンサスを実現することを示す。
この研究は、複雑な車両ネットワークにおける効率的な制御ノード選択のための包括的ソリューションを提供し、大規模インテリジェントトランスポートシステムの展開に実用的な意味を提供する。
関連論文リスト
- Hierarchical Multi-Marginal Optimal Transport for Network Alignment [52.206006379563306]
マルチネットワークアライメントは,複数ネットワーク上での協調学習に必須の要件である。
マルチネットワークアライメントのための階層型マルチマージ最適トランスポートフレームワークHOTを提案する。
提案するHOTは,有効性とスケーラビリティの両面で,最先端の大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-10-06T02:35:35Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Multi Agent DeepRL based Joint Power and Subchannel Allocation in IAB
networks [0.0]
統合アクセスとバックハウリング(IRL)は、将来の世代におけるより高いデータレートに対する前例のない要求を満たすための、実行可能なアプローチである。
本稿では,分数ノードに付随する巨大なアクション空間の問題を,Deep Q-Learning Networkを用いて処理する方法を示す。
論文 参考訳(メタデータ) (2023-08-31T21:30:25Z) - Pontryagin Optimal Control via Neural Networks [19.546571122359534]
我々は,ニューラルネットワークをポントリャーギンの最大原理(PMP)と統合し,NN-PMP-Gradient の効率的なフレームワークを提案する。
結果として生じるコントローラは、未知の複雑な力学を持つシステムに実装することができる。
モデルフリーおよびモデルベース強化学習(RL)アルゴリズムと比較して, NN-PMP-Gradientは, 制御目的の観点から高いサンプル効率と性能を実現する。
論文 参考訳(メタデータ) (2022-12-30T06:47:03Z) - Limited-Fronthaul Cell-Free Hybrid Beamforming with Distributed Deep
Neural Network [0.0]
近接最適解は、アクセスポイント(AP)とネットワークコントローラ(NC)の間で大量の信号交換を必要とする。
本稿では,AP と NC 間の通信オーバーヘッドをゼロあるいは限定して協調ハイブリッドビームフォーミングを行うことができる2つの非教師なしディープニューラルネットワーク(DNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-06-30T16:42:32Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
本稿では,自由空間光(FSO)フロントホールネットワークにおける最適資源割り当てについて検討する。
我々は、FSOネットワーク構造を利用するために、ポリシーパラメータ化のためのグラフニューラルネットワーク(GNN)を検討する。
本アルゴリズムは,システムモデルに関する知識が不要なモデルフリーでGNNを訓練するために開発された。
論文 参考訳(メタデータ) (2020-06-26T14:20:48Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
本稿では,無線ネットワークにおけるダウンリンク電力制御の問題点について考察する。
コンカレントトランスミッション間の干渉を軽減するために,ネットワークトポロジを活用してグラフニューラルネットワークアーキテクチャを構築する。
次に、教師なし原始対実対実最適化手法を用いて最適電力配分決定を学習する。
論文 参考訳(メタデータ) (2020-02-17T07:54:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。