Multi-Issue Bargaining With Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2002.07788v1
- Date: Tue, 18 Feb 2020 18:33:46 GMT
- Title: Multi-Issue Bargaining With Deep Reinforcement Learning
- Authors: Ho-Chun Herbert Chang
- Abstract summary: This paper evaluates the use of deep reinforcement learning in bargaining games.
Two actor-critic networks were trained for the bidding and acceptance strategy.
Neural agents learn to exploit time-based agents, achieving clear transitions in decision preference values.
They also demonstrate adaptive behavior against different combinations of concession, discount factors, and behavior-based strategies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Negotiation is a process where agents aim to work through disputes and
maximize their surplus. As the use of deep reinforcement learning in bargaining
games is unexplored, this paper evaluates its ability to exploit, adapt, and
cooperate to produce fair outcomes. Two actor-critic networks were trained for
the bidding and acceptance strategy, against time-based agents, behavior-based
agents, and through self-play. Gameplay against these agents reveals three key
findings. 1) Neural agents learn to exploit time-based agents, achieving clear
transitions in decision preference values. The Cauchy distribution emerges as
suitable for sampling offers, due to its peaky center and heavy tails. The
kurtosis and variance sensitivity of the probability distributions used for
continuous control produce trade-offs in exploration and exploitation. 2)
Neural agents demonstrate adaptive behavior against different combinations of
concession, discount factors, and behavior-based strategies. 3) Most
importantly, neural agents learn to cooperate with other behavior-based agents,
in certain cases utilizing non-credible threats to force fairer results. This
bears similarities with reputation-based strategies in the evolutionary
dynamics, and departs from equilibria in classical game theory.
Related papers
- Strategic Classification With Externalities [11.36782598786846]
We propose a new variant of the strategic classification problem.
Motivated by real-world applications, our model crucially allows the manipulation of one agent to affect another.
We show that under certain assumptions, the pure Nash Equilibrium of this agent manipulation game is unique and can be efficiently computed.
arXiv Detail & Related papers (2024-10-10T15:28:04Z) - Reciprocal Reward Influence Encourages Cooperation From Self-Interested Agents [2.1301560294088318]
Cooperation between self-interested individuals is a widespread phenomenon in the natural world, but remains elusive in interactions between artificially intelligent agents.
We introduce Reciprocators, reinforcement learning agents which are intrinsically motivated to reciprocate the influence of opponents' actions on their returns.
We show that Reciprocators can be used to promote cooperation in temporally extended social dilemmas during simultaneous learning.
arXiv Detail & Related papers (2024-06-03T06:07:27Z) - Fast Peer Adaptation with Context-aware Exploration [63.08444527039578]
We propose a peer identification reward for learning agents in multi-agent games.
This reward motivates the agent to learn a context-aware policy for effective exploration and fast adaptation.
We evaluate our method on diverse testbeds that involve competitive (Kuhn Poker), cooperative (PO-Overcooked), or mixed (Predator-Prey-W) games with peer agents.
arXiv Detail & Related papers (2024-02-04T13:02:27Z) - Credit-cognisant reinforcement learning for multi-agent cooperation [0.0]
We introduce the concept of credit-cognisant rewards, which allows an agent to perceive the effect its actions had on the environment as well as on its co-agents.
We show that by manipulating these experiences and constructing the reward contained within them to include the rewards received by all the agents within the same action sequence, we are able to improve significantly on the performance of independent deep Q-learning.
arXiv Detail & Related papers (2022-11-18T09:00:25Z) - Intrinsic fluctuations of reinforcement learning promote cooperation [0.0]
Cooperating in social dilemma situations is vital for animals, humans, and machines.
We demonstrate which and how individual elements of the multi-agent learning setting lead to cooperation.
arXiv Detail & Related papers (2022-09-01T09:14:47Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
Recurrent meta reinforcement learning (meta-RL) agents are agents that employ a recurrent neural network (RNN) for the purpose of "learning a learning algorithm"
We shed light on the internal working mechanisms of these agents by reformulating the meta-RL problem using the Partially Observable Markov Decision Process (POMDP) framework.
arXiv Detail & Related papers (2021-04-29T20:34:39Z) - End-to-End Learning and Intervention in Games [60.41921763076017]
We provide a unified framework for learning and intervention in games.
We propose two approaches, respectively based on explicit and implicit differentiation.
The analytical results are validated using several real-world problems.
arXiv Detail & Related papers (2020-10-26T18:39:32Z) - When to (or not to) trust intelligent machines: Insights from an
evolutionary game theory analysis of trust in repeated games [0.8701566919381222]
We study the viability of trust-based strategies in repeated games.
These are reciprocal strategies that cooperate as long as the other player is observed to be cooperating.
By doing so, they reduce the opportunity cost of verifying whether the action of their co-player was actually cooperative.
arXiv Detail & Related papers (2020-07-22T10:53:49Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
We show how to equip RL agents with the ability to give rewards directly to other agents, using a learned incentive function.
Such agents significantly outperform standard RL and opponent-shaping agents in challenging general-sum Markov games.
Our work points toward more opportunities and challenges along the path to ensure the common good in a multi-agent future.
arXiv Detail & Related papers (2020-06-10T20:12:38Z) - Intrinsic Motivation for Encouraging Synergistic Behavior [55.10275467562764]
We study the role of intrinsic motivation as an exploration bias for reinforcement learning in sparse-reward synergistic tasks.
Our key idea is that a good guiding principle for intrinsic motivation in synergistic tasks is to take actions which affect the world in ways that would not be achieved if the agents were acting on their own.
arXiv Detail & Related papers (2020-02-12T19:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.