Knowledge-Based Matching of $n$-ary Tuples
- URL: http://arxiv.org/abs/2002.08103v2
- Date: Thu, 14 May 2020 18:51:53 GMT
- Title: Knowledge-Based Matching of $n$-ary Tuples
- Authors: Pierre Monnin, Miguel Couceiro, Amedeo Napoli, Adrien Coulet
- Abstract summary: We focus on a matching nary rule in a knowledge base with an expanding vocabularies-based methodology.
We tested our method on the domain of pharmacogenomics by searching alignments among 50435 nary vocabularies from four different real-world sources.
- Score: 9.328991021103294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An increasing number of data and knowledge sources are accessible by human
and software agents in the expanding Semantic Web. Sources may differ in
granularity or completeness, and thus be complementary. Consequently, they
should be reconciled in order to unlock the full potential of their conjoint
knowledge. In particular, units should be matched within and across sources,
and their level of relatedness should be classified into equivalent, more
specific, or similar. This task is challenging since knowledge units can be
heterogeneously represented in sources (e.g., in terms of vocabularies). In
this paper, we focus on matching n-ary tuples in a knowledge base with a
rule-based methodology. To alleviate heterogeneity issues, we rely on domain
knowledge expressed by ontologies. We tested our method on the biomedical
domain of pharmacogenomics by searching alignments among 50,435 n-ary tuples
from four different real-world sources. Results highlight noteworthy agreements
and particularities within and across sources.
Related papers
- What Really is Commonsense Knowledge? [58.5342212738895]
We survey existing definitions of commonsense knowledge, ground into the three frameworks for defining concepts, and consolidate them into a unified definition of commonsense knowledge.
We then use the consolidated definition for annotations and experiments on the CommonsenseQA and CommonsenseQA 2.0 datasets.
Our study shows that there exists a large portion of non-commonsense-knowledge instances in the two datasets, and a large performance gap on these two subsets.
arXiv Detail & Related papers (2024-11-06T14:54:19Z) - TRIAD: Automated Traceability Recovery based on Biterm-enhanced
Deduction of Transitive Links among Artifacts [53.92293118080274]
Traceability allows stakeholders to extract and comprehend the trace links among software artifacts introduced across the software life cycle.
Most rely on textual similarities among software artifacts, such as those based on Information Retrieval (IR)
arXiv Detail & Related papers (2023-12-28T06:44:24Z) - Large Language Models as Source Planner for Personalized
Knowledge-grounded Dialogue [72.26474540602517]
SAFARI is a novel framework for planning, understanding, and incorporating under both supervised and unsupervised settings.
We construct a personalized knowledge-grounded dialogue dataset textittextbfKnowledge textbfBehind textbfPersona(textbfKBP)
Experimental results on the KBP dataset demonstrate that the SAFARI framework can effectively produce persona-consistent and knowledge-enhanced responses.
arXiv Detail & Related papers (2023-10-13T03:38:38Z) - A Bipartite Graph is All We Need for Enhancing Emotional Reasoning with
Commonsense Knowledge [16.410940528107115]
We propose a Bipartite Heterogeneous Graph (BHG) method for enhancing emotional reasoning with commonsense knowledge.
BHG-based knowledge infusion can be directly generalized to multi-type and multi-grained knowledge sources.
arXiv Detail & Related papers (2023-08-09T09:09:17Z) - Link Analysis meets Ontologies: Are Embeddings the Answer? [0.0]
We present a systematic evaluation of whether structure-only link analysis methods can offer a scalable means to detecting possible anomalies.
We demonstrate that structure-only link analysis could offer scalable anomaly detection for a subset of the data sets.
This is one of the most extensive systematic studies of the applicability of different types of link analysis methods across semantic resources from different domains.
arXiv Detail & Related papers (2021-11-23T08:05:43Z) - Commonsense Knowledge in Word Associations and ConceptNet [37.751909219863585]
This paper presents an in-depth comparison of two large-scale resources of general knowledge: ConcpetNet and SWOW.
We examine the structure, overlap and differences between the two graphs, as well as the extent to which they encode situational commonsense knowledge.
arXiv Detail & Related papers (2021-09-20T06:06:30Z) - Knowledge-Base Enriched Word Embeddings for Biomedical Domain [5.086571902225929]
We propose a new word embedding based model for biomedical domain that jointly leverages the information from available corpora and domain knowledge.
Unlike existing approaches, the proposed methodology is simple but adept at capturing the precise knowledge available in domain resources in an accurate way.
arXiv Detail & Related papers (2021-02-20T18:18:51Z) - Dimensions of Commonsense Knowledge [60.49243784752026]
We survey a wide range of popular commonsense sources with a special focus on their relations.
We consolidate these relations into 13 knowledge dimensions, each abstracting over more specific relations found in sources.
arXiv Detail & Related papers (2021-01-12T17:52:39Z) - Improving Machine Reading Comprehension with Contextualized Commonsense
Knowledge [62.46091695615262]
We aim to extract commonsense knowledge to improve machine reading comprehension.
We propose to represent relations implicitly by situating structured knowledge in a context.
We employ a teacher-student paradigm to inject multiple types of contextualized knowledge into a student machine reader.
arXiv Detail & Related papers (2020-09-12T17:20:01Z) - Inferential Text Generation with Multiple Knowledge Sources and
Meta-Learning [117.23425857240679]
We study the problem of generating inferential texts of events for a variety of commonsense like textitif-else relations.
Existing approaches typically use limited evidence from training examples and learn for each relation individually.
In this work, we use multiple knowledge sources as fuels for the model.
arXiv Detail & Related papers (2020-04-07T01:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.