論文の概要: Hierarchical Quantized Autoencoders
- arxiv url: http://arxiv.org/abs/2002.08111v3
- Date: Fri, 16 Oct 2020 11:10:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 12:43:36.156978
- Title: Hierarchical Quantized Autoencoders
- Title(参考訳): 階層量子化オートエンコーダ
- Authors: Will Williams, Sam Ringer, Tom Ash, John Hughes, David MacLeod, Jamie
Dougherty
- Abstract要約: 本稿では,Vector Quantized Variencoders (VQ-VAEs) の階層構造を用いて,高い圧縮係数を求める。
量子化と階層的潜在構造の組み合わせは、確率に基づく画像圧縮に役立つことを示す。
得られたスキームは、高い知覚品質の画像を再構成するマルコフ変数の列を生成する。
- 参考スコア(独自算出の注目度): 3.9146761527401432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite progress in training neural networks for lossy image compression,
current approaches fail to maintain both perceptual quality and abstract
features at very low bitrates. Encouraged by recent success in learning
discrete representations with Vector Quantized Variational Autoencoders
(VQ-VAEs), we motivate the use of a hierarchy of VQ-VAEs to attain high factors
of compression. We show that the combination of stochastic quantization and
hierarchical latent structure aids likelihood-based image compression. This
leads us to introduce a novel objective for training hierarchical VQ-VAEs. Our
resulting scheme produces a Markovian series of latent variables that
reconstruct images of high-perceptual quality which retain semantically
meaningful features. We provide qualitative and quantitative evaluations on the
CelebA and MNIST datasets.
- Abstract(参考訳): 画像圧縮の損失に対するニューラルネットワークのトレーニングの進展にもかかわらず、現在のアプローチは知覚的品質と抽象的特徴の両方を非常に低いビットレートで維持することができない。
近年,ベクトル量子変分オートエンコーダ(VQ-VAE)による離散表現学習の成功により,VQ-VAEの階層構造を用いて高い圧縮係数を達成している。
確率的量子化と階層的潜在構造の組み合わせは、確率に基づく画像圧縮に役立つことを示す。
これにより、階層型VQ-VAEをトレーニングするための新しい目標がもたらされる。
提案手法は,意味的に意味のある特徴を保持する高知覚品質の画像を再構成するマルコフ変数列を生成する。
CelebAおよびMNISTデータセットの質的および定量的評価を行う。
関連論文リスト
- Generalized Nested Latent Variable Models for Lossy Coding applied to Wind Turbine Scenarios [14.48369551534582]
学習に基づくアプローチは、圧縮率と再構成された画質の妥協を最小化する。
成功したテクニックは、2レベルネストされた潜伏変数モデル内で機能するディープハイパープライアの導入である。
本稿では,マルコフ連鎖構造を持つ一般化Lレベルネスト生成モデルを設計することによって,この概念を拡張した。
論文 参考訳(メタデータ) (2024-06-10T11:00:26Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
拡散先行型IQA(DP-IQA)と呼ばれる新しいIQA法を提案する。
トレーニング済みの安定拡散をバックボーンとして使用し、復調するU-Netから多レベル特徴を抽出し、それらをデコードして画質スコアを推定する。
上記のモデルの知識をCNNベースの学生モデルに抽出し、適用性を高めるためにパラメータを大幅に削減する。
論文 参考訳(メタデータ) (2024-05-30T12:32:35Z) - Neural Image Compression with Quantization Rectifier [7.097091519502871]
我々は,画像特徴相関を利用した画像圧縮のための新しい量子化法(QR)を開発し,量子化の影響を緩和する。
提案手法は,量子化された特徴量から未知の特徴量を予測するニューラルネットワークアーキテクチャを設計する。
評価では、QRを最先端のニューラルイメージコーデックに統合し、広く使用されているKodakベンチマークの強化モデルとベースラインを比較する。
論文 参考訳(メタデータ) (2024-03-25T22:26:09Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural
Image Compression [62.888755394395716]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
本稿ではベクトル量子化(VQ)に基づく生成モデルを画像圧縮領域に導入する。
VQGANモデルによって学習されたコードブックは、強い表現能力をもたらす。
提案したフレームワークは、知覚的品質指向のメトリクスで最先端のコーデックより優れている。
論文 参考訳(メタデータ) (2023-07-17T06:14:19Z) - Vector Quantized Wasserstein Auto-Encoder [57.29764749855623]
生成的視点から深層離散表現を学習する。
我々は,コードワード列上の離散分布を付与し,コードワード列上の分布をデータ分布に伝達する決定論的デコーダを学習する。
WS 距離のクラスタリングの観点と結びつけて,より優れた,より制御可能なクラスタリングソリューションを実現するための,さらなる理論を開発しています。
論文 参考訳(メタデータ) (2023-02-12T13:51:36Z) - Optimizing Hierarchical Image VAEs for Sample Quality [0.0]
階層的変動オートエンコーダ (VAE) は, 画像モデリングタスクにおいて, 高精度な密度推定を実現している。
これは、画像の非知覚的な詳細を圧縮する過度に強調する学習表現によるものである。
我々は,各潜伏群におけるインフォメーション量を制御するKL重み付け戦略を導入し,学習目標のシャープネスを低減するためにガウス出力層を用いる。
論文 参考訳(メタデータ) (2022-10-18T23:10:58Z) - Hierarchical Residual Learning Based Vector Quantized Variational
Autoencoder for Image Reconstruction and Generation [19.92324010429006]
本稿では,階層的なデータの離散表現を学習するHR-VQVAEと呼ばれる多層変分オートエンコーダを提案する。
画像再構成と生成のタスクについて,本手法の評価を行った。
論文 参考訳(メタデータ) (2022-08-09T06:04:25Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - Variable-Rate Deep Image Compression through Spatially-Adaptive Feature
Transform [58.60004238261117]
空間特徴変換(SFT arXiv:1804.02815)に基づく多目的深部画像圧縮ネットワークを提案する。
本モデルは,任意の画素単位の品質マップによって制御される単一モデルを用いて,幅広い圧縮速度をカバーしている。
提案するフレームワークにより,様々なタスクに対してタスク対応の画像圧縮を行うことができる。
論文 参考訳(メタデータ) (2021-08-21T17:30:06Z) - Early Exit or Not: Resource-Efficient Blind Quality Enhancement for
Compressed Images [54.40852143927333]
ロスシー画像圧縮は、通信帯域を節約するために広範に行われ、望ましくない圧縮アーティファクトをもたらす。
圧縮画像に対する資源効率の高いブラインド品質向上手法(RBQE)を提案する。
提案手法は, 評価された画像の品質に応じて, 自動的にエンハンスメントを終了するか, 継続するかを決定することができる。
論文 参考訳(メタデータ) (2020-06-30T07:38:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。