論文の概要: Generalized Nested Latent Variable Models for Lossy Coding applied to Wind Turbine Scenarios
- arxiv url: http://arxiv.org/abs/2406.06165v1
- Date: Mon, 10 Jun 2024 11:00:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 14:17:29.205319
- Title: Generalized Nested Latent Variable Models for Lossy Coding applied to Wind Turbine Scenarios
- Title(参考訳): 風車シナリオに適用した損失符号化のための一般化ネスト潜時変動モデル
- Authors: Raül Pérez-Gonzalo, Andreas Espersen, Antonio Agudo,
- Abstract要約: 学習に基づくアプローチは、圧縮率と再構成された画質の妥協を最小化する。
成功したテクニックは、2レベルネストされた潜伏変数モデル内で機能するディープハイパープライアの導入である。
本稿では,マルコフ連鎖構造を持つ一般化Lレベルネスト生成モデルを設計することによって,この概念を拡張した。
- 参考スコア(独自算出の注目度): 14.48369551534582
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Rate-distortion optimization through neural networks has accomplished competitive results in compression efficiency and image quality. This learning-based approach seeks to minimize the compromise between compression rate and reconstructed image quality by automatically extracting and retaining crucial information, while discarding less critical details. A successful technique consists in introducing a deep hyperprior that operates within a 2-level nested latent variable model, enhancing compression by capturing complex data dependencies. This paper extends this concept by designing a generalized L-level nested generative model with a Markov chain structure. We demonstrate as L increases that a trainable prior is detrimental and explore a common dimensionality along the distinct latent variables to boost compression performance. As this structured framework can represent autoregressive coders, we outperform the hyperprior model and achieve state-of-the-art performance while reducing substantially the computational cost. Our experimental evaluation is performed on wind turbine scenarios to study its application on visual inspections
- Abstract(参考訳): ニューラルネットワークによる速度歪みの最適化は、圧縮効率と画質の競争的な結果を得た。
この学習ベースのアプローチは、重要情報を自動的に抽出して保持することで、圧縮率と再構成された画質の妥協を最小限に抑えつつ、より重要度の低い詳細を破棄する。
成功したテクニックは、2レベルネストされた潜伏変数モデル内で動作し、複雑なデータ依存関係をキャプチャすることで圧縮を強化するディープハイパープライヤの導入である。
本稿では,マルコフ連鎖構造を持つ一般化Lレベルネスト生成モデルを設計することによって,この概念を拡張した。
トレーニング可能な先行変数が有害であることをLが示すとともに、圧縮性能を高めるために異なる潜伏変数に沿った共通次元を探索する。
この構造化されたフレームワークは自己回帰型コーダを表現できるため、計算コストを大幅に削減しつつ、ハイパープライアモデルより優れ、最先端の性能を実現する。
風力タービンのシナリオによる実験的評価を行い, その視覚検査への応用について検討した。
関連論文リスト
- Causal Context Adjustment Loss for Learned Image Compression [72.7300229848778]
近年,学習画像圧縮(lic)技術は,特にRD性能の点で従来の手法を上回りつつある。
現在の技術のほとんどは、自己回帰エントロピーモデルを備えたVAEベースで、デコードされた因果コンテキストを利用してRD性能を向上する。
本稿では,提案した因果文脈調整損失を用いて因果文脈を的確に調整する方法を初めて検討する。
論文 参考訳(メタデータ) (2024-10-07T09:08:32Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards
General Neural Parameter Prior Models [66.1595537904019]
大型言語モデル(LLM)はゼロショット設定でグラデーション先行として振る舞うことができる。
本稿では,LSMと算術符号を統合する新しい手法であるLM-GCを紹介する。
論文 参考訳(メタデータ) (2024-09-26T13:38:33Z) - Corner-to-Center Long-range Context Model for Efficient Learned Image
Compression [70.0411436929495]
学習された画像圧縮のフレームワークでは、コンテキストモデルは潜在表現間の依存関係をキャプチャする上で重要な役割を果たす。
本研究では,textbfCorner-to-Center 変換器を用いたコンテキストモデル (C$3$M) を提案する。
また,解析および合成変換における受容場を拡大するために,エンコーダ/デコーダのLong-range Crossing Attention Module (LCAM) を用いる。
論文 参考訳(メタデータ) (2023-11-29T21:40:28Z) - LayerCollapse: Adaptive compression of neural networks [13.567747247563108]
トランスフォーマーネットワークは、自然言語処理やコンピュータビジョンにおいて、先行技術より優れている。
モデルは数億のパラメータを含み、重要な計算資源を必要とする。
完全に連結された層の深さを減少させる新しい構造化プルーニング法であるLayerCollapseを提案する。
論文 参考訳(メタデータ) (2023-11-29T01:23:41Z) - Efficient Compression of Overparameterized Deep Models through
Low-Dimensional Learning Dynamics [10.673414267895355]
本稿ではパラメータ化モデルを用いた新しい圧縮手法を提案する。
本アルゴリズムは, 一般化を損なうことなく, トレーニング効率を2倍以上に向上させる。
論文 参考訳(メタデータ) (2023-11-08T23:57:03Z) - Uncovering the Hidden Cost of Model Compression [43.62624133952414]
視覚プロンプティングは、コンピュータビジョンにおける伝達学習の重要な方法として登場した。
モデル圧縮は視覚的プロンプトベース転送の性能に有害である。
しかし、量子化によってモデルが圧縮されるとき、キャリブレーションに対する負の効果は存在しない。
論文 参考訳(メタデータ) (2023-08-29T01:47:49Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
生成的モデリングにおいて、多くの成功したアプローチは、例えば安定拡散のような低次元の潜在空間を利用する。
本研究では, モデル複雑性の観点から潜在空間を再考することにより, 未探索の話題に光を当てることを目的としている。
論文 参考訳(メタデータ) (2023-07-17T07:12:29Z) - Joint Hierarchical Priors and Adaptive Spatial Resolution for Efficient
Neural Image Compression [11.25130799452367]
ニューラル画像圧縮(NIC)のための絶対画像圧縮変換器(ICT)を提案する。
ICTは、潜在表現からグローバルコンテキストとローカルコンテキストの両方をキャプチャし、量子化された潜在表現の分布をパラメータ化する。
我々のフレームワークは、多目的ビデオ符号化(VVC)参照符号化(VTM-18.0)とニューラルスウィンT-ChARMに対する符号化効率とデコーダ複雑性のトレードオフを大幅に改善する。
論文 参考訳(メタデータ) (2023-07-05T13:17:14Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) は閾値に基づくスペーシフィケーションスキームであり、DGCと同等のしきい値推定品質を享受する。
SIDCoは,非圧縮ベースライン,Topk,DGC圧縮機と比較して,最大で41:7%,7:6%,1:9%の速度でトレーニングを高速化する。
論文 参考訳(メタデータ) (2021-01-26T13:06:00Z) - Causal Contextual Prediction for Learned Image Compression [36.08393281509613]
本稿では,逐次的復号化プロセスを利用して潜在空間における因果文脈のエントロピー予測を行うために,分離エントロピー符号化の概念を提案する。
チャネル間の潜伏を分離し、チャネル間の関係を利用して高度に情報的コンテキストを生成する因果コンテキストモデルを提案する。
また、未知点の正確な予測のためのグローバル参照ポイントを見つけることができる因果的大域的予測モデルを提案する。
論文 参考訳(メタデータ) (2020-11-19T08:15:10Z) - End-to-End Facial Deep Learning Feature Compression with Teacher-Student
Enhancement [57.18801093608717]
本稿では,ディープニューラルネットワークの表現と学習能力を活用することで,エンドツーエンドの特徴圧縮手法を提案する。
特に、抽出した特徴量を、レート歪みコストを最適化することにより、エンドツーエンドでコンパクトに符号化する。
提案モデルの有効性を顔の特徴で検証し, 圧縮性能を高いレート精度で評価した。
論文 参考訳(メタデータ) (2020-02-10T10:08:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。