Environment-induced Transitions in Many-body Quantum Teleportation
- URL: http://arxiv.org/abs/2406.02277v1
- Date: Tue, 4 Jun 2024 12:51:23 GMT
- Title: Environment-induced Transitions in Many-body Quantum Teleportation
- Authors: Shuyan Zhou, Pengfei Zhang, Zhenhua Yu,
- Abstract summary: We study many-body quantum teleportation in the presence of environments.
In the quantum regime, teleportation can outperform its classical counterparts, while in the classical regime, it can be replaced by a classical channel.
- Score: 19.646332825082478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum teleportation is a phenomenon arising from entanglement, decisively distinguishing the classical and quantum worlds. The recent success of many-body quantum teleportation is even more surprising: although input information is initially dispersed and encoded into the many-body state in a complex way, the teleportation process can refocus this highly non-local information at the receiver's end. This success manifests intriguing capability of many-body systems in quantum information processing. Current studies indicate that information scrambling, a generic dynamic process in many-body systems, underlies the effectiveness of many-body quantum teleportation. However, this process is known to undergo a novel scrambling-dissipation transition in the presence of environments. How environments affect the quantum information processing capability of many-body systems calls for further investigation. In this work, we study many-body quantum teleportation in the presence of environments. We predict two emergent critical points that hallmark the transitions of the teleportation performance from the quantum regime to the classical regime, and finally to the no-signal regime as the system-environment coupling, quantified by $\gamma$, increases. In the quantum regime, teleportation can outperform its classical counterparts, while in the classical regime, it can be replaced by a classical channel. Our prediction is based on a generic argument harnessing the relationship between many-body quantum teleportation and information scrambling, corroborated by solvable Brownian Sachdev-Ye-Kitaev models.
Related papers
- Quantum teleportation between a continuous-variable optical qumode and a discrete-variable solid-state qubit [12.102621653528027]
We propose a scheme to teleport a continuous variable optical qubit, encoded in an optical qumode, onto a discrete variable solid-state qubit, associated with a single nitrogen-vacancy center spin in diamond, via a hybrid entanglement.
We find that the average teleportation fidelity can still exceed the classical limit, enabling substantial teleportation distances under realistic experimental conditions.
arXiv Detail & Related papers (2024-06-27T09:20:09Z) - Noise mitigation in quantum teleportation [0.0]
Noise-mitigation mechanism applicable in both the discrete- and continuous-variable quantum teleportation schemes.
We find that, as long as a bound state is formed in the energy spectrum of the total system, the quantum superiority of the fidelity is persistently recovered.
arXiv Detail & Related papers (2024-02-04T04:56:32Z) - Towards Quantum-Native Communication Systems: New Developments, Trends,
and Challenges [63.67245855948243]
The survey examines technologies such as quantum-domain (QD) multi-input multi-output (MIMO), QD non-orthogonal multiple access (NOMA), quantum secure direct communication (QSDC)
The current status of quantum sensing, quantum radar, and quantum timing is briefly reviewed in support of future applications.
arXiv Detail & Related papers (2023-11-09T09:45:52Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Many-body quantum teleportation via operator spreading in the
traversable wormhole protocol [1.1198195005311917]
Recent advances have uncovered an intrinsically many-body generalization of quantum teleportation, with an elegant and surprising connection to gravity.
Here, we propose and analyze a new mechanism for many-body quantum teleportation -- dubbed peaked-size teleportation.
We demonstrate the ubiquity of peaked-size teleportation, both analytically and numerically, across a diverse landscape of physical systems.
arXiv Detail & Related papers (2021-01-29T19:00:01Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Quantum Information Scrambling in a Superconducting Qutrit Processor [0.0]
Delocalization of quantum information in strongly-interacting many-body systems has recently begun to unite our understanding of black hole dynamics, transport in exotic non-Fermi liquids, and many-body analogs of quantum chaos.
We implement two-qutrit scrambling operations and embed them in a five-qutrit teleportation algorithm to measure the associated out-time-ordered correlation functions.
arXiv Detail & Related papers (2020-03-06T16:36:23Z) - Teleporting quantum information encoded in fermionic modes [62.997667081978825]
We consider teleportation of quantum information encoded in modes of a fermionic field.
In particular, one is forced to distinguish between single-mode entanglement swapping, and qubit teleportation with or without authentication.
arXiv Detail & Related papers (2020-02-19T14:15:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.