論文の概要: On Adaptive Attacks to Adversarial Example Defenses
- arxiv url: http://arxiv.org/abs/2002.08347v2
- Date: Fri, 23 Oct 2020 12:07:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 13:45:17.555244
- Title: On Adaptive Attacks to Adversarial Example Defenses
- Title(参考訳): 敵の例防衛に対する適応攻撃について
- Authors: Florian Tramer, Nicholas Carlini, Wieland Brendel, Aleksander Madry
- Abstract要約: 本稿では、敵の事例に対して、防御に対する適応攻撃を行うために必要な方法論とアプローチを概説する。
これらの分析が、敵の事例に対して適切な防御攻撃を行うためのガイダンスとして役立てられることを期待している。
- 参考スコア(独自算出の注目度): 123.32678153377915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adaptive attacks have (rightfully) become the de facto standard for
evaluating defenses to adversarial examples. We find, however, that typical
adaptive evaluations are incomplete. We demonstrate that thirteen defenses
recently published at ICLR, ICML and NeurIPS---and chosen for illustrative and
pedagogical purposes---can be circumvented despite attempting to perform
evaluations using adaptive attacks. While prior evaluation papers focused
mainly on the end result---showing that a defense was ineffective---this paper
focuses on laying out the methodology and the approach necessary to perform an
adaptive attack. We hope that these analyses will serve as guidance on how to
properly perform adaptive attacks against defenses to adversarial examples, and
thus will allow the community to make further progress in building more robust
models.
- Abstract(参考訳): 適応攻撃は(当然のことながら)敵の例に対する防御を評価するデファクトスタンダードになっている。
しかし、典型的な適応的評価は不完全である。
ICLR, ICML, NeurIPSで最近公開された13のディフェンスが, イラストや教育目的で選択され, 適応攻撃による評価を試みながら回避可能であることを実証した。
先行評価論文では, 防御が効果的でないことを示す最終結果を中心に, 適応攻撃を行うために必要な方法論とアプローチを整理することに焦点を当てた。
これらの分析が、攻撃例に対する防御に対する適切なアダプティブアタックの実行方法のガイダンスとなり、それによってコミュニティがより堅牢なモデルの構築をさらに前進させることを望んでいる。
関連論文リスト
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Improving behavior based authentication against adversarial attack using XAI [3.340314613771868]
本稿では,eXplainable AI(XAI)をベースとした,このようなシナリオにおける敵攻撃に対する防御戦略を提案する。
本手法で訓練した特徴セレクタは,元の認証器の前のフィルタとして使用することができる。
我々は,XAIをベースとした防衛戦略が敵の攻撃に対して有効であり,他の防衛戦略よりも優れていることを実証する。
論文 参考訳(メタデータ) (2024-02-26T09:29:05Z) - Adversarial Markov Games: On Adaptive Decision-Based Attacks and Defenses [21.759075171536388]
攻撃だけでなく、防御も、相互作用を通じてお互いから学び合うことによって、どのような恩恵を受けるかを示します。
我々は、システムがどのように反応するかを制御するアクティブディフェンスが、意思決定ベースの攻撃に直面した際のモデルの強化に必須の補完であることを示した。
実世界で展開されるMLベースのシステムの堅牢性を確保するための効果的な戦略を策定する。
論文 参考訳(メタデータ) (2023-12-20T21:24:52Z) - Deep-Attack over the Deep Reinforcement Learning [26.272161868927004]
敵攻撃の開発により 強化学習が より脆弱になった
本研究は,実効性と盗聴を自然に考慮し,強化学習に基づく攻撃フレームワークを提案する。
また,これらの2つの側面において,攻撃モデルの性能を評価するための新しい指標を提案する。
論文 参考訳(メタデータ) (2022-05-02T10:58:19Z) - Practical Evaluation of Adversarial Robustness via Adaptive Auto Attack [96.50202709922698]
実用的な評価手法は、便利な(パラメータフリー)、効率的な(イテレーションの少ない)、信頼性を持つべきである。
本稿では,パラメータフリーな適応オートアタック (A$3$) 評価手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T04:53:54Z) - Evaluating the Adversarial Robustness of Adaptive Test-time Defenses [60.55448652445904]
このような適応型テストタイムディフェンスを分類し、その潜在的なメリットと欠点を説明します。
残念なことに、適切な評価を行うと、静的モデルが大幅に改善されることはない。
推論コストを同時に増加しながら、基盤となる静的モデルを弱めるものもあります。
論文 参考訳(メタデータ) (2022-02-28T12:11:40Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
我々は、より適切な勾配方向を見つけ、攻撃効果を高め、より効率的な対人訓練をもたらす標準損失に緩和項を導入する。
本稿では, クリーン画像の関数マッピングを用いて, 敵生成を誘導するGAMA ( Guided Adversarial Margin Attack) を提案する。
また,一段防衛における最先端性能を実現するためのGAT ( Guided Adversarial Training) を提案する。
論文 参考訳(メタデータ) (2020-11-30T16:39:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。