論文の概要: Adversarial Markov Games: On Adaptive Decision-Based Attacks and Defenses
- arxiv url: http://arxiv.org/abs/2312.13435v2
- Date: Tue, 05 Nov 2024 12:22:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:56:54.905086
- Title: Adversarial Markov Games: On Adaptive Decision-Based Attacks and Defenses
- Title(参考訳): 対戦型マルコフゲーム:適応的決定に基づく攻撃と防御について
- Authors: Ilias Tsingenopoulos, Vera Rimmer, Davy Preuveneers, Fabio Pierazzi, Lorenzo Cavallaro, Wouter Joosen,
- Abstract要約: 攻撃だけでなく、防御も、相互作用を通じてお互いから学び合うことによって、どのような恩恵を受けるかを示します。
我々は、システムがどのように反応するかを制御するアクティブディフェンスが、意思決定ベースの攻撃に直面した際のモデルの強化に必須の補完であることを示した。
実世界で展開されるMLベースのシステムの堅牢性を確保するための効果的な戦略を策定する。
- 参考スコア(独自算出の注目度): 21.759075171536388
- License:
- Abstract: Despite considerable efforts on making them robust, real-world ML-based systems remain vulnerable to decision based attacks, as definitive proofs of their operational robustness have so far proven intractable. The canonical approach in robustness evaluation calls for adaptive attacks, that is with complete knowledge of the defense and tailored to bypass it. In this study, we introduce a more expansive notion of being adaptive and show how attacks but also defenses can benefit by it and by learning from each other through interaction. We propose and evaluate a framework for adaptively optimizing black-box attacks and defenses against each other through the competitive game they form. To reliably measure robustness, it is important to evaluate against realistic and worst-case attacks. We thus augment both attacks and the evasive arsenal at their disposal through adaptive control, and observe that the same can be done for defenses, before we evaluate them first apart and then jointly under a multi-agent perspective. We demonstrate that active defenses, which control how the system responds, are a necessary complement to model hardening when facing decision-based attacks; then how these defenses can be circumvented by adaptive attacks, only to finally elicit active and adaptive defenses. We validate our observations through a wide theoretical and empirical investigation to confirm that AI-enabled adversaries pose a considerable threat to black-box ML-based systems, rekindling the proverbial arms race where defenses have to be AI-enabled too. Succinctly, we address the challenges posed by adaptive adversaries and develop adaptive defenses, thereby laying out effective strategies in ensuring the robustness of ML-based systems deployed in the real-world.
- Abstract(参考訳): 現実のMLベースのシステムは、堅牢化へのかなりの努力にもかかわらず、決定に基づく攻撃に対して脆弱なままであり、運用上の堅牢性の確定的な証明は、これまでは困難であることが証明されてきた。
堅牢性評価における標準的アプローチは、防御の完全な知識を持ち、それをバイパスするように調整されたアダプティブアタックを要求される。
本研究では,アダプティブ・アダプティブ(適応性)というより広範な概念を紹介し,攻撃や防御が相互に相互作用を通じて相互に学習することで,そのメリットを示す。
そこで我々は,ブラックボックス攻撃を適応的に最適化し,対戦ゲームを通じて互いに防御する枠組みを提案し,評価する。
堅牢性を確実に測定するには、現実的かつ最悪の攻撃に対して評価することが重要である。
そこで我々は,適応制御により,攻撃と回避兵器の両方を処理時に増強し,防御のために同じことが可能であることを観察し,まずそれらを分離し,次いでマルチエージェントの視点で共同で評価する。
システムがどのように反応するかを制御するアクティブディフェンスは、意思決定ベースの攻撃に直面した際のモデル強化に必須の補完であり、これらのディフェンスが適応的な攻撃によってどのように回避され、最終的にアクティブで適応的なディフェンスが引き出されるかを示す。
我々は、幅広い理論的および実証的な調査を通じて、AI対応の敵がブラックボックスMLベースのシステムに重大な脅威をもたらすことを確認し、防衛もAI対応でなければならない先例の武器競争を再燃させた。
そこで我々は,適応的敵による課題に対処し,適応的防御を開発し,現実世界に展開するMLベースのシステムの堅牢性を確保するための効果的な戦略を立案する。
関連論文リスト
- A Novel Approach to Guard from Adversarial Attacks using Stable Diffusion [0.0]
我々の提案は、AI Guardianフレームワークに対する別のアプローチを提案する。
トレーニングプロセスに敵対的な例を含める代わりに、AIシステムをトレーニングせずに行うことを提案する。
これは、より広い範囲の攻撃に対して本質的に回復力のあるシステムを構築することを目的としています。
論文 参考訳(メタデータ) (2024-05-03T04:08:15Z) - Position: Towards Resilience Against Adversarial Examples [42.09231029292568]
我々は、敵の弾力性の定義と、敵の弾力性のある防御を設計する方法について概観する。
次に, 対向弾性のサブプロブレムを導入し, 連続適応ロバストネス(continuousal adapt robustness)と呼ぶ。
本研究では, 連続適応ロバストネスと, マルチアタックロバストネスと予期せぬアタックロバストネスの関連性を実証する。
論文 参考訳(メタデータ) (2024-05-02T14:58:44Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - A Random-patch based Defense Strategy Against Physical Attacks for Face
Recognition Systems [3.6202815454709536]
顔認識システム(FRS)の物理的攻撃を頑健に検出するランダムパッチ型防御戦略を提案する。
本手法は実世界の顔認識システムに容易に適用でき,検出性能を高めるために他の防御方法にも拡張できる。
論文 参考訳(メタデータ) (2023-04-16T16:11:56Z) - Ares: A System-Oriented Wargame Framework for Adversarial ML [3.197282271064602]
Aresは、現実的なウォーゲームのような環境で、研究者が攻撃や防御を探索できる敵MLの評価フレームワークである。
アレスは、攻撃者とディフェンダーの間の対立を、反対の目的を持つ強化学習環境における2つのエージェントとして表している。
これにより、障害発生までの時間や複雑な戦略の評価など、システムレベルの評価指標が導入される。
論文 参考訳(メタデータ) (2022-10-24T04:55:18Z) - Scale-Invariant Adversarial Attack for Evaluating and Enhancing
Adversarial Defenses [22.531976474053057]
プロジェクテッド・グラディエント・Descent (PGD) 攻撃は最も成功した敵攻撃の1つであることが示されている。
我々は, 対向層の特徴とソフトマックス層の重みの角度を利用して, 対向層の生成を誘導するスケール不変逆襲 (SI-PGD) を提案する。
論文 参考訳(メタデータ) (2022-01-29T08:40:53Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
ますます悪意のある攻撃者は、自動話者検証(ASV)システムで敵攻撃を仕掛けようとする。
本稿では,逐次的自己教師付き学習モデルに基づく標準的かつ攻撃非依存な手法を提案する。
実験により, 本手法は効果的な防御性能を実現し, 敵攻撃に対抗できることを示した。
論文 参考訳(メタデータ) (2021-02-14T01:56:43Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
我々は、より適切な勾配方向を見つけ、攻撃効果を高め、より効率的な対人訓練をもたらす標準損失に緩和項を導入する。
本稿では, クリーン画像の関数マッピングを用いて, 敵生成を誘導するGAMA ( Guided Adversarial Margin Attack) を提案する。
また,一段防衛における最先端性能を実現するためのGAT ( Guided Adversarial Training) を提案する。
論文 参考訳(メタデータ) (2020-11-30T16:39:39Z) - On Adaptive Attacks to Adversarial Example Defenses [123.32678153377915]
本稿では、敵の事例に対して、防御に対する適応攻撃を行うために必要な方法論とアプローチを概説する。
これらの分析が、敵の事例に対して適切な防御攻撃を行うためのガイダンスとして役立てられることを期待している。
論文 参考訳(メタデータ) (2020-02-19T18:50:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。