Computational Design with Crowds
- URL: http://arxiv.org/abs/2002.08657v1
- Date: Thu, 20 Feb 2020 10:40:13 GMT
- Title: Computational Design with Crowds
- Authors: Yuki Koyama and Takeo Igarashi
- Abstract summary: Computational design is aimed at supporting or automating design processes using computational techniques.
One promising approach is to leverage human computation; that is, to incorporate human input into the process.
We discuss such computational design with crowds in the domain of parameter working system.
- Score: 34.76077954140923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational design is aimed at supporting or automating design processes
using computational techniques. However, some classes of design tasks involve
criteria that are difficult to handle only with computers. For example, visual
design tasks seeking to fulfill aesthetic goals are difficult to handle purely
with computers. One promising approach is to leverage human computation; that
is, to incorporate human input into the computation process. Crowdsourcing
platforms provide a convenient way to integrate such human computation into a
working system.
In this chapter, we discuss such computational design with crowds in the
domain of parameter tweaking tasks in visual design. Parameter tweaking is
often performed to maximize the aesthetic quality of designed objects.
Computational design powered by crowds can solve this maximization problem by
leveraging human computation. We discuss the opportunities and challenges of
computational design with crowds with two illustrative examples: (1) estimating
the objective function (specifically, preference learning from crowds' pairwise
comparisons) to facilitate interactive design exploration by a designer and (2)
directly searching for the optimal parameter setting that maximizes the
objective function (specifically, crowds-in-the-loop Bayesian optimization).
Related papers
- Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Tuning computer vision models with task rewards [88.45787930908102]
Misalignment between model predictions and intended usage can be detrimental for the deployment of computer vision models.
In natural language processing, this is often addressed using reinforcement learning techniques that align models with a task reward.
We adopt this approach and show its surprising effectiveness across multiple computer vision tasks, such as object detection, panoptic segmentation, colorization and image captioning.
arXiv Detail & Related papers (2023-02-16T11:49:48Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE)
The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland.
arXiv Detail & Related papers (2022-11-29T17:28:31Z) - Design Automation for Fast, Lightweight, and Effective Deep Learning
Models: A Survey [53.258091735278875]
This survey covers studies of design automation techniques for deep learning models targeting edge computing.
It offers an overview and comparison of key metrics that are used commonly to quantify the proficiency of models in terms of effectiveness, lightness, and computational costs.
The survey proceeds to cover three categories of the state-of-the-art of deep model design automation techniques.
arXiv Detail & Related papers (2022-08-22T12:12:43Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
Designers reportedly struggle with design optimization tasks where they are asked to find a combination of design parameters that maximizes a given set of objectives.
Model-based computational design algorithms assist designers by generating design examples during design.
Black box methods for assistance, on the other hand, can work with any design problem.
arXiv Detail & Related papers (2022-04-15T20:40:43Z) - Physical Design using Differentiable Learned Simulators [9.380022457753938]
In inverse design, learned forward simulators are combined with gradient-based design optimization.
This framework produces high-quality designs by propagating through trajectories of hundreds of steps.
Our results suggest that despite some remaining challenges, machine learning-based simulators are maturing to the point where they can support general-purpose design optimization.
arXiv Detail & Related papers (2022-02-01T19:56:39Z) - An adaptive artificial neural network-based generative design method for
layout designs [17.377351418260577]
An adaptive artificial neural network-based generative design approach is proposed and developed.
A novel adaptive learning and optimization strategy is proposed, which allows the design space to be effectively explored.
The performance of the proposed design method is demonstrated on two heat source layout design problems.
arXiv Detail & Related papers (2021-01-29T05:32:17Z) - Generative Design by Reinforcement Learning: Enhancing the Diversity of
Topology Optimization Designs [5.8010446129208155]
This study proposes a reinforcement learning based generative design process, with reward functions maximizing the diversity of topology designs.
We show that RL-based generative design produces a large number of diverse designs within a short inference time by exploiting GPU in a fully automated manner.
arXiv Detail & Related papers (2020-08-17T06:50:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.