Multi-Agent Reinforcement Learning for Inverse Design in Photonic Integrated Circuits
- URL: http://arxiv.org/abs/2506.18627v1
- Date: Mon, 23 Jun 2025 13:34:27 GMT
- Title: Multi-Agent Reinforcement Learning for Inverse Design in Photonic Integrated Circuits
- Authors: Yannik Mahlau, Maximilian Schier, Christoph Reinders, Frederik Schubert, Marco Bügling, Bodo Rosenhahn,
- Abstract summary: Inverse design of photonic integrated circuits (PICs) has traditionally relied on gradientbased optimization.<n>We present a reinforcement learning environment as well as multi-agent RL algorithms for the design of PICs.
- Score: 19.195483866933984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inverse design of photonic integrated circuits (PICs) has traditionally relied on gradientbased optimization. However, this approach is prone to end up in local minima, which results in suboptimal design functionality. As interest in PICs increases due to their potential for addressing modern hardware demands through optical computing, more adaptive optimization algorithms are needed. We present a reinforcement learning (RL) environment as well as multi-agent RL algorithms for the design of PICs. By discretizing the design space into a grid, we formulate the design task as an optimization problem with thousands of binary variables. We consider multiple two- and three-dimensional design tasks that represent PIC components for an optical computing system. By decomposing the design space into thousands of individual agents, our algorithms are able to optimize designs with only a few thousand environment samples. They outperform previous state-of-the-art gradient-based optimization in both twoand three-dimensional design tasks. Our work may also serve as a benchmark for further exploration of sample-efficient RL for inverse design in photonics.
Related papers
- Striving for Faster and Better: A One-Layer Architecture with Auto Re-parameterization for Low-Light Image Enhancement [50.93686436282772]
We aim to delve into the limits of image enhancers both from visual quality and computational efficiency.<n>By rethinking the task demands, we build an explicit connection, i.e., visual quality and computational efficiency are corresponding to model learning and structure design.<n>Ultimately, this achieves efficient low-light image enhancement using only a single convolutional layer, while maintaining excellent visual quality.
arXiv Detail & Related papers (2025-02-27T08:20:03Z) - Exploring Quasi-Global Solutions to Compound Lens Based Computational Imaging Systems [15.976326291076377]
We present Quasi-Global Search Optics (QGSO) to automatically design compound lens based computational imaging systems.<n>QGSO serves as a transformative end-to-end lens design paradigm for superior global search ability.
arXiv Detail & Related papers (2024-04-30T01:59:25Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Photonic Structures Optimization Using Highly Data-Efficient Deep
Learning: Application To Nanofin And Annular Groove Phase Masks [40.11095094521714]
Metasurfaces offer a flexible framework for the manipulation of light properties in the realm of thin film optics.
This study aims to introduce a surrogate optimization framework for these devices.
The framework is applied to develop two kinds of vortex phase masks (VPMs) tailored for application in astronomical high-contrast imaging.
arXiv Detail & Related papers (2023-09-05T07:19:14Z) - Automated Circuit Sizing with Multi-objective Optimization based on
Differential Evolution and Bayesian Inference [1.1579778934294358]
We introduce a design optimization method based on Generalized Differential Evolution 3 (GDE3) and Gaussian Processes (GPs)
The proposed method is able to perform sizing for complex circuits with a large number of design variables and many conflicting objectives to be optimized.
We evaluate the introduced method on two voltage regulators showing different levels of complexity.
arXiv Detail & Related papers (2022-06-06T06:48:45Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
Designers reportedly struggle with design optimization tasks where they are asked to find a combination of design parameters that maximizes a given set of objectives.
Model-based computational design algorithms assist designers by generating design examples during design.
Black box methods for assistance, on the other hand, can work with any design problem.
arXiv Detail & Related papers (2022-04-15T20:40:43Z) - A Framework for Discovering Optimal Solutions in Photonic Inverse Design [0.0]
Photonic inverse design has emerged as an indispensable engineering tool for complex optical systems.
Finding solutions approaching global optimum may present a computationally intractable task.
We develop a framework that allows expediting the search of solutions close to global optimum on complex optimization spaces.
arXiv Detail & Related papers (2021-06-03T22:11:03Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Speeding up Computational Morphogenesis with Online Neural Synthetic
Gradients [51.42959998304931]
A wide range of modern science and engineering applications are formulated as optimization problems with a system of partial differential equations (PDEs) as constraints.
These PDE-constrained optimization problems are typically solved in a standard discretize-then-optimize approach.
We propose a general framework to speed up PDE-constrained optimization using online neural synthetic gradients (ONSG) with a novel two-scale optimization scheme.
arXiv Detail & Related papers (2021-04-25T22:43:51Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z) - Generative Design by Reinforcement Learning: Enhancing the Diversity of
Topology Optimization Designs [5.8010446129208155]
This study proposes a reinforcement learning based generative design process, with reward functions maximizing the diversity of topology designs.
We show that RL-based generative design produces a large number of diverse designs within a short inference time by exploiting GPU in a fully automated manner.
arXiv Detail & Related papers (2020-08-17T06:50:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.