Observation of the Anomalous Hall Effect in a Collinear Antiferromagnet
- URL: http://arxiv.org/abs/2002.08712v2
- Date: Fri, 8 Jan 2021 03:49:52 GMT
- Title: Observation of the Anomalous Hall Effect in a Collinear Antiferromagnet
- Authors: Zexin Feng, Xiaorong Zhou, Libor \v{S}mejkal, Lei Wu, Zengwei Zhu,
Huixin Guo, Rafael Gonz\'alez-Hern\'andez, Xiaoning Wang, Han Yan, Peixin
Qin, Xin Zhang, Haojiang Wu, Hongyu Chen, Zhengcai Xia, Chengbao Jiang,
Michael Coey, Jairo Sinova, Tom\'a\v{s} Jungwirth, Zhiqi Liu
- Abstract summary: Time-reversal breaking is the basic physics concept underpinning many magnetic topological phenomena.
A potential breakthrough is the recent theoretical prediction of the AHE arising from collinear antiferromagnetism.
Our results open a new unexplored chapter of time-reversal symmetry breaking phenomena in the abundant class of collinear antiferromagnetic materials.
- Score: 8.779987820381487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time-reversal symmetry breaking is the basic physics concept underpinning
many magnetic topological phenomena such as the anomalous Hall effect (AHE) and
its quantized variant. The AHE has been primarily accompanied by a
ferromagnetic dipole moment, which hinders the topological quantum states and
limits data density in memory devices, or by a delicate noncollinear magnetic
order with strong spin decoherence, both limiting their applicability. A
potential breakthrough is the recent theoretical prediction of the AHE arising
from collinear antiferromagnetism in an anisotropic crystal environment. This
new mechanism does not require magnetic dipolar or noncollinear fields.
However, it has not been experimentally observed to date. Here we demonstrate
this unconventional mechanism by measuring the AHE in an epilayer of a rutile
collinear antiferromagnet RuO$_2$. The observed anomalous Hall conductivity is
large, exceeding 300 S/cm, and is in agreement with the Berry phase topological
transport contribution. Our results open a new unexplored chapter of
time-reversal symmetry breaking phenomena in the abundant class of collinear
antiferromagnetic materials.
Related papers
- Anisotropy-induced spin parity effects [0.0]
A dichotomy in the physical behavior of a system arises, solely depending on whether the relevant spin quantum number is integral or half-odd integral.
Here, we put forth a simple and general scheme for generating such effects in any spatial dimension through the use of anisotropic interactions.
We demonstrate its utility through a detailed analysis of the magnetization behavior of a specific one-dimensional spin chain model, an anisotropic antiferromagnet in a transverse magnetic field.
arXiv Detail & Related papers (2024-02-29T16:15:43Z) - Intrinsic nonlinear Hall effect in two-dimensional honeycomb topological antiferromagnets [0.0]
In this work, we consider honeycomb topological antiferromagets that are effectively described by a $mathcalPT$-symmetric antiferromagnetic Kane-Mele model.
By varying the chemical potential, we find that the nonlinear Hall conductivity tensors exhibit kinks when the Fermi surface undergoes Lifshitz transitions.
Our work shows that the two-dimensional honeycomb topological antiferromagnets are an ideal class of material systems with rich properties for the study of intrinsic nonlinear Hall effect.
arXiv Detail & Related papers (2024-02-05T02:48:01Z) - Experimental signatures of quantum and topological states in frustrated
magnetism [0.21766826415827592]
Frustration in magnetic materials can lead to a diverse range of novel quantum and topological states with exotic quasiparticle excitations.
We review prominent examples of such emergent phenomena, including magnetically-disordered and extensively degenerate spin ices.
We highlight experimental signatures of these often elusive phenomena and single out the most suitable experimental techniques that can be used to detect them.
arXiv Detail & Related papers (2023-10-23T16:29:06Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Observation of an Anomalous Hall Effect in Single-crystal Mn3Pt [0.0]
A large anomalous Hall effect (AHE) was observed experimentally in one of the hexagonal members of the Mn3X family.
Here, we demonstrate for the first time a substantial AHE in a bulk sample of a cubic member of the Mn3X family.
arXiv Detail & Related papers (2022-09-13T10:26:07Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Ferromagnetic Gyroscopes for Tests of Fundamental Physics [49.853792068336034]
A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque.
We model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization.
arXiv Detail & Related papers (2020-10-17T07:13:50Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Fluctuational Anomalous Hall and Nernst Effects in Superconductors [0.0]
We develop kinetic theory of the anomalous Hall and Nernst effects in superconductors induced by fluctuations in the vicinity of the critical transition temperature.
asymmetric skew-scattering due to spin-orbit interaction gives rise to a new anomalous Hall conductance promoted by Maki-Thompson interference and density of states fluctuational effects.
The anomalous Nernst effect is found due to a special nonlinear Aslamazov-Larkin term from the quantum-crossing of interacting fluctuations in a Hikami box with the skew-scattering process.
arXiv Detail & Related papers (2020-02-19T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.