論文の概要: Regularized Autoencoders via Relaxed Injective Probability Flow
- arxiv url: http://arxiv.org/abs/2002.08927v1
- Date: Thu, 20 Feb 2020 18:22:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 07:00:36.125141
- Title: Regularized Autoencoders via Relaxed Injective Probability Flow
- Title(参考訳): Relaxed Injective Probability Flowによる正規化オートエンコーダ
- Authors: Abhishek Kumar, Ben Poole, Kevin Murphy
- Abstract要約: 非可逆フローベース生成モデルは、抽出可能な確率計算と推論を可能にしながら、サンプルを生成するための効果的な方法である。
本稿では, モデル上の単射性要件を回避し, 単射性のみを仮定する確率フローに基づく生成モデルを提案する。
- 参考スコア(独自算出の注目度): 35.39933775720789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Invertible flow-based generative models are an effective method for learning
to generate samples, while allowing for tractable likelihood computation and
inference. However, the invertibility requirement restricts models to have the
same latent dimensionality as the inputs. This imposes significant
architectural, memory, and computational costs, making them more challenging to
scale than other classes of generative models such as Variational Autoencoders
(VAEs). We propose a generative model based on probability flows that does away
with the bijectivity requirement on the model and only assumes injectivity.
This also provides another perspective on regularized autoencoders (RAEs), with
our final objectives resembling RAEs with specific regularizers that are
derived by lower bounding the probability flow objective. We empirically
demonstrate the promise of the proposed model, improving over VAEs and AEs in
terms of sample quality.
- Abstract(参考訳): 逆流型生成モデル(invertible flow-based generative models)はサンプル生成を学習する上で有効な手法である。
しかし、可逆性要件は、モデルが入力と同じ潜在次元を持つように制限する。
これは重要なアーキテクチャ、メモリ、計算コストを課し、変分オートエンコーダ(vaes)のような他の生成モデルのクラスよりもスケールが困難になる。
本稿では,モデル上の単射性要件を取り除き,単射性のみを仮定する確率フローに基づく生成モデルを提案する。
これはまた、正規化オートエンコーダ(RAE)に関する別の視点を提供し、最終的な目的は、確率フローの目的の低い境界から導出される特定の正規化子を持つRAEに似ている。
我々は,提案モデルの期待を実証し,サンプル品質の観点からvaesおよびaesよりも改善した。
関連論文リスト
- Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
「忘れ分布からのサンプルを特徴とする特定種類の画像の生成を減らすために、近似機械学習アルゴリズムを提案する。」
次に、既存のベースラインと比較してモデルの整合性を保つ上で優れた効果を示す未学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-04T13:15:28Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
ラベルなしデータセットを、効率的な自己教師付き学習(SSL)のための小さな合成サンプル群に蒸留する新しい問題を提案する。
両レベル最適化におけるSSL目標に対する合成サンプルの勾配は、データ拡張やマスキングから生じるランダム性から、テキストバイアスを受けていることを最初に証明する。
転送学習を含む様々な応用における本手法の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-10-10T10:48:52Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
本研究では,ジェネレーティブ・アドバイサル・ネットワークや正規化フローなどの生成モデルのための新しいトレーニング手法を開発した。
指定された精度-リコールトレードオフを達成することは、textitPR-divergencesと呼ぶ家族からのユニークな$f$-divergenceを最小化することを意味する。
当社のアプローチは,ImageNetなどのデータセットでテストした場合の精度とリコールの両面で,BigGANのような既存の最先端モデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-05-30T10:07:17Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
マルコフ連鎖モンテカルロのようなサンプリングに基づくアプローチの使用は、それぞれの可能性評価が計算的に高価であるときに難解になる可能性がある。
変分推論と正規化フローを組み合わせた新しいアプローチは、潜在変数空間の次元と線形にしか成長しない計算コストによって特徴づけられる。
本稿では,ニューラルネットワークサロゲートモデルの正規化フローパラメータと重みを代わりに更新する最適化戦略である,適応サロゲートを用いた正規化フロー(NoFAS)を提案する。
論文 参考訳(メタデータ) (2021-08-28T14:31:45Z) - Model Selection for Bayesian Autoencoders [25.619565817793422]
本稿では,オートエンコーダの出力と経験的データ分布との分散スライス-ワッサーシュタイン距離を最適化することを提案する。
我々のBAEは、フレキシブルなディリクレ混合モデルを潜在空間に適合させることにより、生成モデルに変換する。
我々は,教師なしの学習課題に対する膨大な実験的キャンペーンを質的かつ定量的に評価し,先行研究が重要となる小規模データ体制において,我々のアプローチが最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2021-06-11T08:55:00Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Learning Consistent Deep Generative Models from Sparse Data via
Prediction Constraints [16.48824312904122]
我々は変分オートエンコーダやその他の深層生成モデルを学ぶための新しいフレームワークを開発する。
これら2つのコントリビューション -- 予測制約と一貫性制約 -- が,画像分類性能の有望な向上につながることを示す。
論文 参考訳(メタデータ) (2020-12-12T04:18:50Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。