論文の概要: Comparing recurrent and convolutional neural networks for predicting
wave propagation
- arxiv url: http://arxiv.org/abs/2002.08981v3
- Date: Mon, 20 Apr 2020 14:28:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 06:21:52.931983
- Title: Comparing recurrent and convolutional neural networks for predicting
wave propagation
- Title(参考訳): 波伝搬予測のための再帰ニューラルネットワークと畳み込みニューラルネットワークの比較
- Authors: Stathi Fotiadis, Eduardo Pignatelli, Mario Lino Valencia, Chris
Cantwell, Amos Storkey, Anil A. Bharath
- Abstract要約: 本研究では,繰り返しおよび畳み込み型深層ニューラルネットワークによる表面波の予測性能について検討する。
我々は,シミュレーションのごく一部で予測時間を保ちながら,従来の手法よりも長期予測を改善する。
また,この課題において,畳み込みネットワークは,少なくとも再帰ネットワークと同様に機能することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamical systems can be modelled by partial differential equations and
numerical computations are used everywhere in science and engineering. In this
work, we investigate the performance of recurrent and convolutional deep neural
network architectures to predict the surface waves. The system is governed by
the Saint-Venant equations. We improve on the long-term prediction over
previous methods while keeping the inference time at a fraction of numerical
simulations. We also show that convolutional networks perform at least as well
as recurrent networks in this task. Finally, we assess the generalisation
capability of each network by extrapolating in longer time-frames and in
different physical settings.
- Abstract(参考訳): 力学系は偏微分方程式によってモデル化することができ、数値計算は科学や工学の至るところで用いられる。
本研究では,繰り返しおよび畳み込み型ニューラルネットワークアーキテクチャの性能について検討し,表面波の予測を行う。
この体系はサン=ヴェナント方程式によって支配されている。
我々は,シミュレーションのごく一部で予測時間を保ちながら,従来の手法よりも長期予測を改善する。
また,この課題において,畳み込みネットワークは,少なくとも再帰ネットワークと同様に機能することを示す。
最後に,より長い時間枠と異なる物理的設定を補間することにより,各ネットワークの一般化能力を評価する。
関連論文リスト
- Gradient-free training of recurrent neural networks [3.272216546040443]
本稿では,勾配に基づく手法を使わずに再帰型ニューラルネットワークの重みとバイアスを全て構成する計算手法を提案する。
このアプローチは、動的システムに対するランダムな特徴ネットワークとクープマン作用素理論の組み合わせに基づいている。
時系列の計算実験,カオス力学系の予測,制御問題などにおいて,構築したリカレントニューラルネットワークのトレーニング時間と予測精度が向上することが観察された。
論文 参考訳(メタデータ) (2024-10-30T21:24:34Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - On the reproducibility of fully convolutional neural networks for
modeling time-space evolving physical systems [0.0]
ディープラーニング完全畳み込みニューラルネットワークは、同じ条件で同じネットワークを数回トレーニングすることで評価される。
ダブル浮動小数点精度で実施したトレーニングは、ネットワークパラメータとテストエラー範囲の両方のばらつきを大幅に低減し、見積もりをわずかに改善する。
論文 参考訳(メタデータ) (2021-05-12T07:39:30Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
まず最初に、このリッチな意味では、ResNetsは意味のある動的でないことを示します。
次に、ニューラルネットワークモデルが連続力学系を表現することを実証する。
ResNetアーキテクチャの詳細な一般化としてContinuousNetを紹介します。
論文 参考訳(メタデータ) (2020-08-05T22:54:09Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Finite Difference Neural Networks: Fast Prediction of Partial
Differential Equations [5.575293536755126]
データから偏微分方程式を学習するための新しいニューラルネットワークフレームワークである有限差分ニューラルネットワーク(FDNet)を提案する。
具体的には、トラジェクトリデータから基礎となる偏微分方程式を学習するために提案した有限差分ネットワークを設計する。
論文 参考訳(メタデータ) (2020-06-02T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。