MODMA dataset: a Multi-modal Open Dataset for Mental-disorder Analysis
- URL: http://arxiv.org/abs/2002.09283v3
- Date: Thu, 5 Mar 2020 03:43:31 GMT
- Title: MODMA dataset: a Multi-modal Open Dataset for Mental-disorder Analysis
- Authors: Hanshu Cai, Yiwen Gao, Shuting Sun, Na Li, Fuze Tian, Han Xiao,
Jianxiu Li, Zhengwu Yang, Xiaowei Li, Qinglin Zhao, Zhenyu Liu, Zhijun Yao,
Minqiang Yang, Hong Peng, Jing Zhu, Xiaowei Zhang, Guoping Gao, Fang Zheng,
Rui Li, Zhihua Guo, Rong Ma, Jing Yang, Lan Zhang, Xiping Hu, Yumin Li, Bin
Hu
- Abstract summary: We present a multi-modal open dataset for mental-disorder analysis.
The dataset includes EEG and audio data from clinically depressed patients and matching normal controls.
The EEG dataset includes not only data collected using traditional 128-electrodes mounted elastic cap, but also a novel wearable 3-electrode EEG collector for pervasive applications.
- Score: 22.766963176531338
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: According to the World Health Organization, the number of mental disorder
patients, especially depression patients, has grown rapidly and become a
leading contributor to the global burden of disease. However, the present
common practice of depression diagnosis is based on interviews and clinical
scales carried out by doctors, which is not only labor-consuming but also
time-consuming. One important reason is due to the lack of physiological
indicators for mental disorders. With the rising of tools such as data mining
and artificial intelligence, using physiological data to explore new possible
physiological indicators of mental disorder and creating new applications for
mental disorder diagnosis has become a new research hot topic. However, good
quality physiological data for mental disorder patients are hard to acquire. We
present a multi-modal open dataset for mental-disorder analysis. The dataset
includes EEG and audio data from clinically depressed patients and matching
normal controls. All our patients were carefully diagnosed and selected by
professional psychiatrists in hospitals. The EEG dataset includes not only data
collected using traditional 128-electrodes mounted elastic cap, but also a
novel wearable 3-electrode EEG collector for pervasive applications. The
128-electrodes EEG signals of 53 subjects were recorded as both in resting
state and under stimulation; the 3-electrode EEG signals of 55 subjects were
recorded in resting state; the audio data of 52 subjects were recorded during
interviewing, reading, and picture description. We encourage other researchers
in the field to use it for testing their methods of mental-disorder analysis.
Related papers
- EEG Foundation Challenge: From Cross-Task to Cross-Subject EEG Decoding [71.31963197992998]
We introduce a large-scale, code-based competition comprising two challenges.<n>The Transfer Challenge asks participants to build and test a model that can zero-shot decode new tasks and new subjects from their EEG data.<n>The Psychopathology factor prediction Challenge asks participants to infer subject measures of mental health from EEG data.
arXiv Detail & Related papers (2025-06-23T21:25:19Z) - Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.
Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.
Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Brain-Computer Interfaces for Emotional Regulation in Patients with Various Disorders [0.0]
The research focuses on the development of a novel neural network algorithm for understanding EEG data.
The data analysis reveals promising results, as the algorithm is able to successfully classify emotional states with a high degree of accuracy.
This suggests that EEG-based BCIs have the potential to be a valuable tool in aiding individuals with a range of neurological and physiological disorders in recognizing and regulating their emotions.
arXiv Detail & Related papers (2024-11-22T01:57:14Z) - MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - A Novel Audio-Visual Information Fusion System for Mental Disorders Detection [6.3344832182228]
Mental disorders are among the foremost contributors to the global healthcare challenge.
In this paper, we focus on the emotional expression features of mental disorders and introduce a multimodal mental disorder diagnosis system based on audio-visual information input.
Our proposed system is based on spatial-temporal attention networks and innovative uses a less computationally intensive pre-train audio recognition network to fine-tune the video recognition module for better results.
arXiv Detail & Related papers (2024-09-03T19:16:36Z) - Depression Detection and Analysis using Large Language Models on Textual and Audio-Visual Modalities [25.305909441170993]
Depression has proven to be a significant public health issue, profoundly affecting the psychological well-being of individuals.
If it remains undiagnosed, depression can lead to severe health issues, which can manifest physically and even lead to suicide.
arXiv Detail & Related papers (2024-07-08T17:00:51Z) - Using LLMs to Aid Annotation and Collection of Clinically-Enriched Data in Bipolar Disorder and Schizophrenia [9.804382916824245]
This paper demonstrates the application of contemporary language models in sequence-to-sequence tasks to enhance mental health research.
We show that small models are capable of annotation for domain-specific clinical variables, data collection for mental-health instruments, and perform better then commercial large models.
arXiv Detail & Related papers (2024-06-18T15:00:24Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - GDPR Compliant Collection of Therapist-Patient-Dialogues [48.091760741427656]
We elaborate on the challenges we faced in starting our collection of therapist-patient dialogues in a psychiatry clinic under the General Data Privacy Regulation of the European Union.
We give an overview of each step in our procedure and point out the potential pitfalls to motivate further research in this field.
arXiv Detail & Related papers (2022-11-22T15:51:10Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
We present a method for predicting the medication status of Parkinson's disease patients using the public mPower dataset.
The proposed method shows promising results in predicting three medication statuses objectively.
arXiv Detail & Related papers (2022-07-26T02:08:08Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - EEG based Major Depressive disorder and Bipolar disorder detection using
Neural Networks: A review [4.611395301352823]
There is a big need nowadays for phenotypic characterization of psychiatric disorders with biomarkers.
EEG signals could offer a rich signature for MDD and BD and then they could improve understanding of pathophysiological mechanisms underling these mental disorders.
This review will prove to be a structured and valuable initial point for the researchers working on depression and bipolar disorders recognition by using EEG signals.
arXiv Detail & Related papers (2020-09-28T15:19:54Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.