EEG Foundation Challenge: From Cross-Task to Cross-Subject EEG Decoding
- URL: http://arxiv.org/abs/2506.19141v1
- Date: Mon, 23 Jun 2025 21:25:19 GMT
- Title: EEG Foundation Challenge: From Cross-Task to Cross-Subject EEG Decoding
- Authors: Bruno Aristimunha, Dung Truong, Pierre Guetschel, Seyed Yahya Shirazi, Isabelle Guyon, Alexandre R. Franco, Michael P. Milham, Aviv Dotan, Scott Makeig, Alexandre Gramfort, Jean-Remi King, Marie-Constance Corsi, Pedro A. Valdés-Sosa, Amit Majumdar, Alan Evans, Terrence J Sejnowski, Oren Shriki, Sylvain Chevallier, Arnaud Delorme,
- Abstract summary: We introduce a large-scale, code-based competition comprising two challenges.<n>The Transfer Challenge asks participants to build and test a model that can zero-shot decode new tasks and new subjects from their EEG data.<n>The Psychopathology factor prediction Challenge asks participants to infer subject measures of mental health from EEG data.
- Score: 71.31963197992998
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Current electroencephalogram (EEG) decoding models are typically trained on small numbers of subjects performing a single task. Here, we introduce a large-scale, code-submission-based competition comprising two challenges. First, the Transfer Challenge asks participants to build and test a model that can zero-shot decode new tasks and new subjects from their EEG data. Second, the Psychopathology factor prediction Challenge asks participants to infer subject measures of mental health from EEG data. For this, we use an unprecedented, multi-terabyte dataset of high-density EEG signals (128 channels) recorded from over 3,000 child to young adult subjects engaged in multiple active and passive tasks. We provide several tunable neural network baselines for each of these two challenges, including a simple network and demographic-based regression models. Developing models that generalise across tasks and individuals will pave the way for ML network architectures capable of adapting to EEG data collected from diverse tasks and individuals. Similarly, predicting mental health-relevant personality trait values from EEG might identify objective biomarkers useful for clinical diagnosis and design of personalised treatment for psychological conditions. Ultimately, the advances spurred by this challenge could contribute to the development of computational psychiatry and useful neurotechnology, and contribute to breakthroughs in both fundamental neuroscience and applied clinical research.
Related papers
- Deep Learning-Powered Electrical Brain Signals Analysis: Advancing Neurological Diagnostics [13.196462537320595]
Review systematically examines advances in deep learning approaches for EEG/iEEG-based neurological diagnostics.<n>We focus on applications across 7 neurological conditions using 46 datasets.<n>We propose a standardized benchmark for evaluating models across diverse datasets.
arXiv Detail & Related papers (2025-02-24T14:45:05Z) - Brain-Computer Interfaces for Emotional Regulation in Patients with Various Disorders [0.0]
The research focuses on the development of a novel neural network algorithm for understanding EEG data.
The data analysis reveals promising results, as the algorithm is able to successfully classify emotional states with a high degree of accuracy.
This suggests that EEG-based BCIs have the potential to be a valuable tool in aiding individuals with a range of neurological and physiological disorders in recognizing and regulating their emotions.
arXiv Detail & Related papers (2024-11-22T01:57:14Z) - EEGPT: Unleashing the Potential of EEG Generalist Foundation Model by Autoregressive Pre-training [9.57946371147345]
EEGPT is the first generalist EEG foundation model designed to address these challenges.
First, we propose an electrode-wise modeling strategy that treats each electrode as a fundamental unit.
Second, we develop the first autoregressive EEG pre-trained model.
Third, we introduce a multi-task transfer learning paradigm using a learnable electrode graph network.
arXiv Detail & Related papers (2024-10-14T12:17:54Z) - NeuroLM: A Universal Multi-task Foundation Model for Bridging the Gap between Language and EEG Signals [21.363722751437066]
We propose NeuroLM, the first multi-task foundation model that leverages the capabilities of Large Language Models (LLMs) by regarding EEG signals as a foreign language.<n>Our approach begins with learning a text-aligned neural tokenizer through vector-quantized temporal-frequency prediction, which encodes EEG signals into discrete neural tokens.<n>We are the first to demonstrate that, by specific incorporation with LLMs, NeuroLM unifies diverse EEG tasks within a single model through instruction tuning.
arXiv Detail & Related papers (2024-08-27T12:07:09Z) - RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier [0.0]
Intracranial electroencephalography (iEEG) is increasingly used for clinical and brain-computer interface applications.<n>We introduce a novel decoder model that is robust to inter-subject electrode implantation variability.<n>We call this model RISE-iEEG, which stands for Robust to Inter-Subject Electrode Implantation Variability iEEG.
arXiv Detail & Related papers (2024-08-12T18:33:19Z) - EEG decoding with conditional identification information [7.873458431535408]
Decoding EEG signals is crucial for unraveling human brain and advancing brain-computer interfaces.
Traditional machine learning algorithms have been hindered by the high noise levels and inherent inter-person variations in EEG signals.
Recent advances in deep neural networks (DNNs) have shown promise, owing to their advanced nonlinear modeling capabilities.
arXiv Detail & Related papers (2024-03-21T13:38:59Z) - Evaluating the structure of cognitive tasks with transfer learning [67.22168759751541]
This study investigates the transferability of deep learning representations between different EEG decoding tasks.
We conduct extensive experiments using state-of-the-art decoding models on two recently released EEG datasets.
arXiv Detail & Related papers (2023-07-28T14:51:09Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
We design two transfer learning challenges around diagnostics and Brain-Computer-Interfacing (BCI)
Task 1 is centred on medical diagnostics, addressing automatic sleep stage annotation across subjects.
Task 2 is centred on Brain-Computer Interfacing (BCI), addressing motor imagery decoding across both subjects and data sets.
arXiv Detail & Related papers (2022-02-14T12:12:20Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.