Brain-Computer Interfaces for Emotional Regulation in Patients with Various Disorders
- URL: http://arxiv.org/abs/2411.14666v1
- Date: Fri, 22 Nov 2024 01:57:14 GMT
- Title: Brain-Computer Interfaces for Emotional Regulation in Patients with Various Disorders
- Authors: Vedant Mehta,
- Abstract summary: The research focuses on the development of a novel neural network algorithm for understanding EEG data.
The data analysis reveals promising results, as the algorithm is able to successfully classify emotional states with a high degree of accuracy.
This suggests that EEG-based BCIs have the potential to be a valuable tool in aiding individuals with a range of neurological and physiological disorders in recognizing and regulating their emotions.
- Score: 0.0
- License:
- Abstract: Neurological and Physiological Disorders that impact emotional regulation each have their own unique characteristics which are important to understand in order to create a generalized solution to all of them. The purpose of this experiment is to explore the potential applications of EEG-based Brain-Computer Interfaces (BCIs) in enhancing emotional regulation for individuals with neurological and physiological disorders. The research focuses on the development of a novel neural network algorithm for understanding EEG data, with a particular emphasis on recognizing and regulating emotional states. The procedure involves the collection of EEG-based emotion data from open-Neuro. Using novel data modification techniques, information from the dataset can be altered to create a dataset that has neural patterns of patients with disorders whilst showing emotional change. The data analysis reveals promising results, as the algorithm is able to successfully classify emotional states with a high degree of accuracy. This suggests that EEG-based BCIs have the potential to be a valuable tool in aiding individuals with a range of neurological and physiological disorders in recognizing and regulating their emotions. To improve upon this work, data collection on patients with neurological disorders should be done to improve overall sample diversity.
Related papers
- EEG Emotion Copilot: Pruning LLMs for Emotional EEG Interpretation with Assisted Medical Record Generation [13.048477440429195]
This paper presents the EEG Emotion Copilot, a system leveraging a lightweight large language model (LLM) operating in a local setting.
The system is designed to first recognize emotional states directly from EEG signals, subsequently generate personalized diagnostic and treatment suggestions.
Privacy concerns are also addressed, with a focus on ethical data collection, processing, and the protection of users' personal information.
arXiv Detail & Related papers (2024-09-30T19:15:05Z) - Complex Emotion Recognition System using basic emotions via Facial Expression, EEG, and ECG Signals: a review [1.8310098790941458]
The Complex Emotion Recognition System (CERS) deciphers complex emotional states by examining combinations of basic emotions expressed, their interconnections, and the dynamic variations.
The development of AI systems for discerning complex emotions poses a substantial challenge with significant implications for affective computing.
incorporating physiological signals such as Electrocardiogram (ECG) and Electroencephalogram (EEG) can notably enhance CERS.
arXiv Detail & Related papers (2024-09-09T05:06:10Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - Synthesizing Affective Neurophysiological Signals Using Generative
Models: A Review Paper [28.806992102323324]
The integration of emotional intelligence in machines is an important step in advancing human-computer interaction.
The scarcity of public affective datasets presents a challenge.
We emphasize the use of generative models to address this issue in neurophysiological signals.
arXiv Detail & Related papers (2023-06-05T08:38:30Z) - Optimized EEG based mood detection with signal processing and deep
neural networks for brain-computer interface [0.0]
The aim of this study is to establish a smart decision-making model to identify EEG's relation with the mood of the subject.
EEG signals of 28 healthy human subjects have been observed with consent and attempts have been made to study and recognise moods.
Using these techniques, up to 96.01% detection accuracy has been obtained.
arXiv Detail & Related papers (2023-03-30T15:23:24Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
A task-oriented self-supervised learning approach is proposed to train a more effective anomaly detector.
A specific two branch convolutional neural network with larger kernels is designed as the feature extractor.
The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs.
arXiv Detail & Related papers (2022-07-04T13:15:08Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.