論文の概要: Deep Multi-Facial Patches Aggregation Network For Facial Expression
Recognition
- arxiv url: http://arxiv.org/abs/2002.09298v1
- Date: Thu, 20 Feb 2020 17:57:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 06:23:58.339465
- Title: Deep Multi-Facial Patches Aggregation Network For Facial Expression
Recognition
- Title(参考訳): 表情認識のための深層多面パッチアグリゲーションネットワーク
- Authors: Ahmed Rachid Hazourli and Amine Djeghri and Hanan Salam and Alice
Othmani
- Abstract要約: 深層多面的パッチアグリゲーションネットワークに基づく顔表情認識(FER)のアプローチを提案する。
ディープ機能は、ディープサブネットワークを使用して顔のパッチから学習され、表現分類のために1つのディープアーキテクチャに集約される。
- 参考スコア(独自算出の注目度): 5.735035463793008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an approach for Facial Expressions Recognition
(FER) based on a deep multi-facial patches aggregation network. Deep features
are learned from facial patches using deep sub-networks and aggregated within
one deep architecture for expression classification . Several problems may
affect the performance of deep-learning based FER approaches, in particular,
the small size of existing FER datasets which might not be sufficient to train
large deep learning networks. Moreover, it is extremely time-consuming to
collect and annotate a large number of facial images. To account for this, we
propose two data augmentation techniques for facial expression generation to
expand FER labeled training datasets. We evaluate the proposed framework on
three FER datasets. Results show that the proposed approach achieves
state-of-art FER deep learning approaches performance when the model is trained
and tested on images from the same dataset. Moreover, the proposed data
augmentation techniques improve the expression recognition rate, and thus can
be a solution for training deep learning FER models using small datasets. The
accuracy degrades significantly when testing for dataset bias.
- Abstract(参考訳): 本稿では,深層多面的パッチアグリゲーションネットワークに基づく顔表情認識(FER)のアプローチを提案する。
ディープ機能はディープサブネットワークを使用して顔パッチから学び、表現分類のための1つのディープアーキテクチャに集約される。
特に、大規模なディープラーニングネットワークをトレーニングするのに不十分な既存のFERデータセットの小さなサイズは、ディープラーニングベースのFERアプローチのパフォーマンスに影響する可能性がある。
さらに、多数の顔画像を収集し、注釈をつけるのに非常に時間がかかる。
そこで本研究では,FERラベル付きトレーニングデータセットを拡張するために,表情生成のための2つのデータ拡張手法を提案する。
提案フレームワークを3つのferデータセット上で評価する。
その結果,提案手法は,モデルが同じデータセットのイメージ上でトレーニングされ,テストされた場合に,最先端のFER深層学習を実現する。
さらに,提案手法により表現認識率が向上し,より小さなデータセットを用いた深層学習FERモデルの学習が可能である。
データセットバイアスのテストでは、精度が大幅に低下する。
関連論文リスト
- Fiducial Focus Augmentation for Facial Landmark Detection [4.433764381081446]
本稿では,モデルによる顔構造理解を高めるために,新しい画像強調手法を提案する。
我々は,Deep Canonical correlation Analysis (DCCA) に基づく損失を考慮した,シームズアーキテクチャに基づくトレーニング機構を採用している。
提案手法は,様々なベンチマークデータセットにおいて,最先端のアプローチよりも優れている。
論文 参考訳(メタデータ) (2024-02-23T01:34:00Z) - A Comparative Study of Data Augmentation Techniques for Deep Learning
Based Emotion Recognition [11.928873764689458]
感情認識のための一般的なディープラーニングアプローチを包括的に評価する。
音声信号の長距離依存性が感情認識に重要であることを示す。
スピード/レート向上は、モデル間で最も堅牢なパフォーマンス向上を提供する。
論文 参考訳(メタデータ) (2022-11-09T17:27:03Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
放射状基底関数(RBF)ユニットによって形成された複数の分岐で拡張されたCNNベースのアーキテクチャを提案する。
RBFユニットは、中間表現を用いて類似のインスタンスで共有される局所パターンをキャプチャする。
提案手法は,提案手法の競争力を高めるためのローカル情報の導入であることを示す。
論文 参考訳(メタデータ) (2021-09-07T21:05:56Z) - Multi-Agent Semi-Siamese Training for Long-tail and Shallow Face
Learning [54.13876727413492]
多くの現実世界の顔認識シナリオでは、トレーニングデータセットの深さは浅いため、IDごとに2つの顔画像しか利用できません。
非均一なサンプルの増加により、このような問題はより一般的なケース、すなわち長い尾の顔学習に変換される。
これらの問題に対処するために,マルチエージェントセミシアントレーニング(masst)という高度なソリューションを導入する。
広範な実験と比較は、長い尾と浅い顔学習のためのMASSTの利点を示しています。
論文 参考訳(メタデータ) (2021-05-10T04:57:32Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
顔の表情の自動認識(FER)の最先端モデルは、非常に深いニューラルネットワークに基づいており、訓練には効果的だがかなり高価である。
私たちは、一般的なディープニューラルネットワークよりもはるかに少ないパラメータを持つ軽量ニューラルネットワークであるFaceChannelを形式化します。
我々は、私たちのモデルがFERの現在の最先端技術に匹敵するパフォーマンスを達成する方法を実証する。
論文 参考訳(メタデータ) (2020-09-15T09:25:37Z) - Noisy Student Training using Body Language Dataset Improves Facial
Expression Recognition [10.529781894367877]
本稿では,ラベル付きデータセットと非ラベル付きデータセットを組み合わせた自己学習手法を提案する。
実験分析により,ノイズの多い学生ネットワークを反復的にトレーニングすることで,より優れた結果が得られることが示された。
提案手法は,ベンチマークデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2020-08-06T13:45:52Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。