Spreading of correlations in Markovian open quantum systems
- URL: http://arxiv.org/abs/2002.09527v1
- Date: Fri, 21 Feb 2020 19:42:32 GMT
- Title: Spreading of correlations in Markovian open quantum systems
- Authors: Vincenzo Alba, Federico Carollo
- Abstract summary: We show that the quasi-particle picture remains valid for open quantum systems.
For free fermions with gain/loss dissipation we provide formulae fully describing incoherent and quasiparticle contributions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the spreading of quantum correlations in out-of-equilibrium
many-body systems is one of the major challenges in physics. For {\it isolated}
systems, a hydrodynamic theory explains the origin and spreading of
entanglement via the propagation of quasi-particle pairs. However, when systems
interact with their surrounding much less has been established. Here we show
that the quasi-particle picture remains valid for open quantum systems: while
information is still spread by quasiparticles, the environment modifies their
correlation and introduces incoherent and mixing effects. For free fermions
with gain/loss dissipation we provide formulae fully describing incoherent and
quasiparticle contributions in the spreading of entropy and mutual information.
Importantly, the latter is not affected by incoherent correlations. The mutual
information is exponentially damped at short times and eventually vanishes
signalling the onset of a classical limit. The behaviour of the logarithmic
negativity is similar and this scenario is common to other dissipations. For
weak dissipation, the presence of quasiparticles underlies remarkable scaling
behaviors.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Exact asymptotics of long-range quantum correlations in a nonequilibrium steady state [0.0]
We analytically study the scaling of quantum correlation measures on a one-dimensional containing a noninteracting impurity.
We derive the exact form of the subleading logarithmic corrections to the extensive terms of correlation measures.
This echoes the case of equilibrium states, where such logarithmic terms may convey universal information about the physical system.
arXiv Detail & Related papers (2023-10-25T18:00:48Z) - Deep learning probability flows and entropy production rates in active matter [15.238808518078567]
We develop a deep learning framework to estimate the score of a high-dimensional probability density.
To represent the score, we introduce a novel, spatially-local transformer network architecture.
We show that a single network trained on a system of 4096 particles at one packing fraction can generalize to other regions of the phase diagram.
arXiv Detail & Related papers (2023-09-22T16:44:18Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Entanglement and Correlation Spreading in non-Hermitian Spin Chains [0.0]
Non-Hermitian quantum many-body systems are attracting widespread interest for their exotic properties.
We study how quantum information and correlations spread under a quantum quench generated by a prototypical non-Hermitian spin chain.
arXiv Detail & Related papers (2022-01-24T19:00:02Z) - Hydrodynamics of quantum entropies in Ising chains with linear
dissipation [0.0]
We study the dynamics of quantum information and of quantum correlations after a quantum quench, in transverse field Ising chains subject to generic linear dissipation.
As we show, in the hydrodynamic limit of long times, large system sizes, and weak dissipation, entropy-related quantities admit a simple description within the so-called quasiparticle picture.
arXiv Detail & Related papers (2021-09-04T10:20:14Z) - Complete complementarity relations in system-environment decoherent
dynamics [0.0]
We study how entanglement is redistributed and turnedinto general correlations between the degrees of freedom of the whole system.
By considering the environment as part of a pure quantumsystem, the linear entropy is shown to be not just a measure of mixedness of a particular subsystem,but a correlation measure of the subsystem with rest of the world.
arXiv Detail & Related papers (2020-09-21T11:41:40Z) - Decay and recurrence of non-Gaussian correlations in a quantum many-body
system [0.45823749779393547]
We observe a non-Gaussian initial state evolving under non-interacting dynamics in a quantum many-body system.
This non-equilibrium evolution is triggered by abruptly switching off the effective interaction between the observed collective degrees of freedom.
A description of this dynamics requires a novel mechanism for the emergence of Gaussian correlations.
arXiv Detail & Related papers (2020-03-03T21:49:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.