Complete complementarity relations in system-environment decoherent
dynamics
- URL: http://arxiv.org/abs/2009.09769v3
- Date: Wed, 2 Jun 2021 11:39:50 GMT
- Title: Complete complementarity relations in system-environment decoherent
dynamics
- Authors: Marcos L. W. Basso, Jonas Maziero
- Abstract summary: We study how entanglement is redistributed and turnedinto general correlations between the degrees of freedom of the whole system.
By considering the environment as part of a pure quantumsystem, the linear entropy is shown to be not just a measure of mixedness of a particular subsystem,but a correlation measure of the subsystem with rest of the world.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the system-environment information flow from the point of view
ofcomplete complementarity relations. We consider some commonly used noisy
quantum channels:Amplitude damping, phase damping, bit flip, bit-phase flip,
phase flip, depolarizing, and correlatedamplitude damping. By starting with an
entangled bipartite pure quantum state, with the linearentropy being the
quantifier of entanglement, we study how entanglement is redistributed and
turnedinto general correlations between the degrees of freedom of the whole
system. For instance, it ispossible to express the entanglement entropy in
terms of the multipartite quantum coherence or interms of the correlated
quantum coherence of the different partitions of the system. In addition,we
notice that for the depolarizing and bit-phase flip channels the wave and
particle aspects candecrease or increase together. Besides, by considering the
environment as part of a pure quantumsystem, the linear entropy is shown to be
not just a measure of mixedness of a particular subsystem,but a correlation
measure of the subsystem with rest of the world.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Entanglement preservation in tripartite quantum systems under dephasing
dynamics [0.0]
We investigate the tripartite entanglement dynamics of pure and mixed states in the presence of a structured dephasing environment at finite temperature.
We show that the robustness of the quantum system to decoherence is dependent on the distribution of entanglement.
The sustainability of tripartite entanglement is shown to be enhanced significantly in presence of reservoir memory.
arXiv Detail & Related papers (2023-11-09T06:19:08Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Discord and Decoherence [0.0]
We investigate how quantum discord is modified by a quantum-to-classical transition.
We find that the evolution of quantum discord in presence of an environment is a competition between the growth of the squeezing amplitude and the decrease of the state purity.
arXiv Detail & Related papers (2021-12-09T17:01:54Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Quantum correlation entropy [0.0]
We study quantum coarse-grained entropy and demonstrate that the gap in entropy between local and global coarse-grainings is a natural generalization of entanglement entropy to mixed states and multipartite systems.
This "quantum correlation entropy" $Srm QC$ is additive over independent systems, measures total nonclassical correlations, and reduces to the entanglement entropy for bipartite pure states.
arXiv Detail & Related papers (2020-05-11T20:13:43Z) - Spreading of correlations in Markovian open quantum systems [0.0]
We show that the quasi-particle picture remains valid for open quantum systems.
For free fermions with gain/loss dissipation we provide formulae fully describing incoherent and quasiparticle contributions.
arXiv Detail & Related papers (2020-02-21T19:42:32Z) - Adiabatic quantum decoherence in many non-interacting subsystems induced
by the coupling with a common boson bath [0.0]
This work addresses quantum adiabatic decoherence of many-body spin systems coupled with a boson field in the framework of open quantum systems theory.
We generalize the traditional spin-boson model by considering a system-environment interaction Hamiltonian that represents a partition of non-interacting subsystems.
arXiv Detail & Related papers (2019-12-30T16:39:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.