Entanglement and Correlation Spreading in non-Hermitian Spin Chains
- URL: http://arxiv.org/abs/2201.09895v1
- Date: Mon, 24 Jan 2022 19:00:02 GMT
- Title: Entanglement and Correlation Spreading in non-Hermitian Spin Chains
- Authors: Xhek Turkeshi and Marco Schir\'o
- Abstract summary: Non-Hermitian quantum many-body systems are attracting widespread interest for their exotic properties.
We study how quantum information and correlations spread under a quantum quench generated by a prototypical non-Hermitian spin chain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-Hermitian quantum many-body systems are attracting widespread interest
for their exotic properties, including unconventional quantum criticality and
topology. Here we study how quantum information and correlations spread under a
quantum quench generated by a prototypical non-Hermitian spin chain. Using the
mapping to fermions we solve exactly the problem and compute the entanglement
entropy and the correlation dynamics in the thermodynamic limit. Depending on
the quench parameters, we identify two dynamical phases. One is characterized
by rapidly saturating entanglement and correlations. The other instead presents
a logarithmic growth in time, and correlations spreading faster than the
Lieb-Robinson bound, with collapses and revivals giving rise to a modulated
light-cone structure. Here, in the long-time limit, we compute analytically the
entanglement entropy that we show to scale logarithmically with the size of the
cut, with an effective central charge that we obtain in closed form. Our
results provide an example of an exactly solvable non-Hermitian many-body
problem that shows rich physics including entanglement and spectral
transitions.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Superexponential behaviors of out-of-time ordered correlators and
Loschmidt echo in a non-Hermitian interacting system [4.144331441157407]
We study the dynamics of quantum chaos and quantum scrambling under many-body interaction effects.
Our findings suggest a kind of fastest divergence of two nearby quantum states.
arXiv Detail & Related papers (2023-05-20T09:33:14Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Exact Quantum Dynamics, Shortcuts to Adiabaticity, and Quantum Quenches
in Strongly-Correlated Many-Body Systems: The Time-Dependent Jastrow Ansatz [3.0616044531734192]
We introduce a generalization of the Jastrow ansatz for time-dependent wavefunctions.
It provides an efficient and exact description of the time-evolution of a variety of systems exhibiting strong correlations.
arXiv Detail & Related papers (2022-10-26T18:00:03Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Dynamical scaling symmetry and asymptotic quantum correlations for
time-dependent scalar fields [0.0]
In time-independent quantum systems, entanglement entropy possesses an inherent scaling symmetry that the energy of the system does not have.
We show that such systems have dynamical scaling symmetry that leaves the evolution of various measures of quantum correlations invariant.
arXiv Detail & Related papers (2022-05-26T13:20:46Z) - Multipartite correlations in quantum collision models [0.0]
A challenge in the standard collision model is how to describe quantum correlations among ancillas induced by successive system-ancilla interactions.
Here we develop a tensor network formalism to address both challenges.
In the case of the initially correlated ancillas, we construct a general tensor diagram for the system dynamics and derive a memory- kernel master equation.
arXiv Detail & Related papers (2022-04-05T17:06:27Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.