One-Class Graph Neural Networks for Anomaly Detection in Attributed
Networks
- URL: http://arxiv.org/abs/2002.09594v2
- Date: Sat, 6 Jun 2020 11:28:03 GMT
- Title: One-Class Graph Neural Networks for Anomaly Detection in Attributed
Networks
- Authors: Xuhong Wang, Baihong Jin, Ying Du, Ping Cui and Yupu Yang
- Abstract summary: One Class Graph Neural Network (OCGNN) is a one-class classification framework for graph anomaly detection.
OCGNN is designed to combine the powerful representation ability of Graph Neural Networks along with the classical one-class objective.
- Score: 2.591494941326856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, graph-structured data are increasingly used to model complex
systems. Meanwhile, detecting anomalies from graph has become a vital research
problem of pressing societal concerns. Anomaly detection is an unsupervised
learning task of identifying rare data that differ from the majority. As one of
the dominant anomaly detection algorithms, One Class Support Vector Machine has
been widely used to detect outliers. However, those traditional anomaly
detection methods lost their effectiveness in graph data. Since traditional
anomaly detection methods are stable, robust and easy to use, it is vitally
important to generalize them to graph data. In this work, we propose One Class
Graph Neural Network (OCGNN), a one-class classification framework for graph
anomaly detection. OCGNN is designed to combine the powerful representation
ability of Graph Neural Networks along with the classical one-class objective.
Compared with other baselines, OCGNN achieves significant improvements in
extensive experiments.
Related papers
- Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - Normality Learning-based Graph Anomaly Detection via Multi-Scale
Contrastive Learning [61.57383634677747]
Graph anomaly detection (GAD) has attracted increasing attention in machine learning and data mining.
Here, we propose a normality learning-based GAD framework via multi-scale contrastive learning networks (NLGAD for abbreviation)
Notably, the proposed algorithm improves the detection performance (up to 5.89% AUC gain) compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-09-12T08:06:04Z) - Graph Anomaly Detection with Unsupervised GNNs [19.772490600670363]
We design GLAM, an end-to-end graph-level anomaly detection model based on graph neural networks (GNNs)
We also propose a new pooling strategy for graph-level embedding, called MMD-pooling, that is geared toward detecting distribution anomalies which has not been considered before.
arXiv Detail & Related papers (2022-10-18T01:59:58Z) - Graph Anomaly Detection with Graph Neural Networks: Current Status and
Challenges [9.076649460696402]
Graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks.
This survey is the first comprehensive review of graph anomaly detection methods based on GNNs.
arXiv Detail & Related papers (2022-09-29T16:47:57Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
arXiv Detail & Related papers (2021-10-04T03:42:09Z) - An Introduction to Robust Graph Convolutional Networks [71.68610791161355]
We propose a novel Robust Graph Convolutional Neural Networks for possible erroneous single-view or multi-view data.
By incorporating an extra layers via Autoencoders into traditional graph convolutional networks, we characterize and handle typical error models explicitly.
arXiv Detail & Related papers (2021-03-27T04:47:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.