論文の概要: Incorporating Effective Global Information via Adaptive Gate Attention
for Text Classification
- arxiv url: http://arxiv.org/abs/2002.09673v1
- Date: Sat, 22 Feb 2020 10:06:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 19:28:44.903358
- Title: Incorporating Effective Global Information via Adaptive Gate Attention
for Text Classification
- Title(参考訳): テキスト分類のための適応ゲート注意による効果的なグローバル情報の導入
- Authors: Xianming Li, Zongxi Li, Yingbin Zhao, Haoran Xie, Qing Li
- Abstract要約: 複数のベースラインモデルと比較して,単純な統計情報により分類性能が向上することを示す。
本稿では,グローバル情報を用いた適応ゲート注意モデル (AGA+GI) と呼ばれるゲート機構を持つ分類器を提案する。
実験の結果,提案手法はCNNベースの手法やRNNベースの手法よりも精度が高いことがわかった。
- 参考スコア(独自算出の注目度): 13.45504908358177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dominant text classification studies focus on training classifiers using
textual instances only or introducing external knowledge (e.g., hand-craft
features and domain expert knowledge). In contrast, some corpus-level
statistical features, like word frequency and distribution, are not well
exploited. Our work shows that such simple statistical information can enhance
classification performance both efficiently and significantly compared with
several baseline models. In this paper, we propose a classifier with gate
mechanism named Adaptive Gate Attention model with Global Information (AGA+GI),
in which the adaptive gate mechanism incorporates global statistical features
into latent semantic features and the attention layer captures dependency
relationship within the sentence. To alleviate the overfitting issue, we
propose a novel Leaky Dropout mechanism to improve generalization ability and
performance stability. Our experiments show that the proposed method can
achieve better accuracy than CNN-based and RNN-based approaches without global
information on several benchmarks.
- Abstract(参考訳): 支配的なテキスト分類研究は、テキストインスタンスのみを使用したトレーニング分類や外部知識の導入(例えば、手工芸の特徴やドメインエキスパート知識)に焦点を当てている。
対照的に、単語頻度や分布といったコーパスレベルの統計機能はうまく活用されていない。
本研究は,いくつかのベースラインモデルと比較して,これらの単純な統計情報により分類性能が向上することを示す。
本稿では,グローバル情報を用いた適応ゲート注意モデル (AGA+GI) と呼ばれるゲート機構を持つ分類器を提案する。
オーバーフィッティング問題を緩和するために,一般化能力と性能安定性を向上させるための新しいLeaky Dropout機構を提案する。
提案手法は,複数のベンチマークでグローバル情報を得ることなく,cnnベースおよびrnnベースの手法よりも精度が向上することを示す。
関連論文リスト
- Reducing Spurious Correlation for Federated Domain Generalization [15.864230656989854]
オープンワールドのシナリオでは、グローバルモデルは特定のメディアによってキャプチャされた全く新しいドメインデータをうまく予測するのに苦労する可能性がある。
既存の手法はまだこの問題に対処するために、サンプルとラベルの間の強い統計的相関に頼っている。
ローカルレベルとグローバルレベルでの全体的な最適化フレームワークであるFedCDを紹介します。
論文 参考訳(メタデータ) (2024-07-27T05:06:31Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - Adaptive Global-Local Representation Learning and Selection for
Cross-Domain Facial Expression Recognition [54.334773598942775]
ドメインシフトは、クロスドメイン顔表情認識(CD-FER)において重要な課題となる
適応的グローバルローカル表現学習・選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-20T02:21:41Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
弱い監督下での映像異常検出は重大な課題を呈する。
本稿では,効率的なコンテキストモデリングとセマンティック識別性の向上に焦点をあてた,弱教師付き異常検出フレームワークを提案する。
提案手法は,特定の異常なサブクラスの検出精度を大幅に向上させ,その実用的価値と有効性を裏付けるものである。
論文 参考訳(メタデータ) (2023-06-26T06:45:16Z) - ConAM: Confidence Attention Module for Convolutional Neural Networks [1.3571579680845614]
本研究では,局所的な文脈情報とグローバルな文脈情報との相関に基づく新しいアテンション機構を提案する。
本手法は,少ないパラメータで情報量を増加させつつ,無駄な情報を抑制する。
私たちはPythonライブラリのPytorchでConAMを実装しています。
論文 参考訳(メタデータ) (2021-10-27T12:06:31Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
我々は、新しいノイズ強調型教師付きオートエンコーダ(NSAE)を用いて、特徴分布のより広範なバリエーションを捉えるようモデルに教える。
NSAEは入力を共同で再構築し、入力のラベルと再構成されたペアを予測することによってモデルを訓練する。
また、NSAE構造を利用して、より適応性を高め、対象領域の分類性能を向上させる2段階の微調整手順を提案する。
論文 参考訳(メタデータ) (2021-08-11T04:45:56Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
本稿では,特徴のランダムなサブセットを乱してビューを形成するコントラスト学習手法であるSCARFを提案する。
SCARFは既存の戦略を補完し、オートエンコーダのような代替手段より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-29T08:08:33Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised Adapt Adaptation (UDA) は、関連性のある異なるラベル付きソースドメインから新しいラベルなしターゲットドメインへの知識の転送を目標としている。
既存のudaメソッドの多くはソースデータへのアクセスを必要としており、プライバシ上の懸念からデータが機密で共有できない場合は適用できない。
本稿では、ソースデータにアクセスする代わりに、トレーニング済みの分類モデルのみを用いて現実的な設定に取り組むことを目的とする。
論文 参考訳(メタデータ) (2020-12-14T07:28:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。