論文の概要: Towards Efficient and General-Purpose Few-Shot Misclassification Detection for Vision-Language Models
- arxiv url: http://arxiv.org/abs/2503.20492v1
- Date: Wed, 26 Mar 2025 12:31:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:21:55.575531
- Title: Towards Efficient and General-Purpose Few-Shot Misclassification Detection for Vision-Language Models
- Title(参考訳): ビジョンランゲージモデルのための効率的かつ汎用的なFew-Shot誤分類検出に向けて
- Authors: Fanhu Zeng, Zhen Cheng, Fei Zhu, Xu-Yao Zhang,
- Abstract要約: 現代のニューラルネットワークは、誤って分類された予測に対して過度に自信を示し、エラーを検出するための信頼度推定の必要性を強調している。
我々は、テキスト情報を利用した視覚言語モデル(VLM)を利用して、効率的で汎用的な誤分類検出フレームワークを確立する。
VLMのパワーを活用することで、MisDのためのFew-Shotプロンプト学習フレームワークであるFSMisDを構築し、スクラッチからトレーニングを控え、チューニング効率を向上させる。
- 参考スコア(独自算出の注目度): 25.51735861729728
- License:
- Abstract: Reliable prediction by classifiers is crucial for their deployment in high security and dynamically changing situations. However, modern neural networks often exhibit overconfidence for misclassified predictions, highlighting the need for confidence estimation to detect errors. Despite the achievements obtained by existing methods on small-scale datasets, they all require training from scratch and there are no efficient and effective misclassification detection (MisD) methods, hindering practical application towards large-scale and ever-changing datasets. In this paper, we pave the way to exploit vision language model (VLM) leveraging text information to establish an efficient and general-purpose misclassification detection framework. By harnessing the power of VLM, we construct FSMisD, a Few-Shot prompt learning framework for MisD to refrain from training from scratch and therefore improve tuning efficiency. To enhance misclassification detection ability, we use adaptive pseudo sample generation and a novel negative loss to mitigate the issue of overconfidence by pushing category prompts away from pseudo features. We conduct comprehensive experiments with prompt learning methods and validate the generalization ability across various datasets with domain shift. Significant and consistent improvement demonstrates the effectiveness, efficiency and generalizability of our approach.
- Abstract(参考訳): 分類器による信頼性の高い予測は、高いセキュリティと動的に変化する状況への展開に不可欠である。
しかしながら、現代のニューラルネットワークは、誤って分類された予測に対して過度に自信を示し、エラーを検出するための信頼度推定の必要性を強調している。
小規模データセットの既存の手法が達成した成果にもかかわらず、それらはすべてスクラッチからトレーニングを必要とし、大規模かつ継続的なデータセットへの実践的応用を妨げる、効率的で効果的なミス分類検出(MisD)方法がない。
本稿では,テキスト情報を利用した視覚言語モデル(VLM)を利用して,効率的で汎用的な誤分類検出フレームワークを構築する方法を提案する。
VLMのパワーを活用することで、MisDのためのFew-Shotプロンプト学習フレームワークであるFSMisDを構築し、スクラッチからトレーニングを控え、チューニング効率を向上させる。
誤分類検出能力を高めるために、適応的な擬似サンプル生成と新規な負の損失を用いて、カテゴリのプロンプトを擬似特徴から遠ざけることで、過信の問題を軽減する。
我々は、素早い学習手法による包括的な実験を行い、ドメインシフトを伴う各種データセットの一般化能力を検証した。
重要かつ一貫した改善は、我々のアプローチの有効性、効率、一般化可能性を示す。
関連論文リスト
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - A Generative Framework for Low-Cost Result Validation of Machine Learning-as-a-Service Inference [4.478182379059458]
FidesはML-as-a-Service(ML)推論のリアルタイム整合性検証のための新しいフレームワークである。
Fidesは、統計的分析とばらつき測定を使用して、サービスモデルが攻撃を受けている場合、高い確率で識別するクライアント側攻撃検出モデルを備えている。
攻撃検出と再分類モデルの訓練のための生成的逆ネットワークフレームワークを考案した。
論文 参考訳(メタデータ) (2023-03-31T19:17:30Z) - EvCenterNet: Uncertainty Estimation for Object Detection using
Evidential Learning [26.535329379980094]
EvCenterNetは、新しい不確実性を認識した2Dオブジェクト検出フレームワークである。
分類と回帰の不確実性の両方を推定するために、顕在的学習を用いる。
我々は、KITTIデータセット上でモデルをトレーニングし、配布外のデータセットに挑戦して評価する。
論文 参考訳(メタデータ) (2023-03-06T11:07:11Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
提案手法は,複数の視覚タスクにおけるネットワーク一般化能力を常に改善することを示す。
我々の手法は単純だが有効であり、トレーニング可能なパラメータや損失制約を伴わずにネットワークに容易に統合できる。
論文 参考訳(メタデータ) (2023-01-16T14:25:02Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。