Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks
- URL: http://arxiv.org/abs/2107.06405v1
- Date: Tue, 13 Jul 2021 21:39:21 GMT
- Title: Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks
- Authors: Sungryull Sohn, Sungtae Lee, Jongwook Choi, Harm van Seijen, Mehdi
Fatemi, Honglak Lee
- Abstract summary: We show that any optimal policy necessarily satisfies the k-SP constraint.
We propose a novel cost function that penalizes the policy violating SP constraint, instead of completely excluding it.
Our experiments on MiniGrid, DeepMind Lab, Atari, and Fetch show that the proposed method significantly improves proximal policy optimization (PPO)
- Score: 59.419152768018506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose the k-Shortest-Path (k-SP) constraint: a novel constraint on the
agent's trajectory that improves the sample efficiency in sparse-reward MDPs.
We show that any optimal policy necessarily satisfies the k-SP constraint.
Notably, the k-SP constraint prevents the policy from exploring state-action
pairs along the non-k-SP trajectories (e.g., going back and forth). However, in
practice, excluding state-action pairs may hinder the convergence of RL
algorithms. To overcome this, we propose a novel cost function that penalizes
the policy violating SP constraint, instead of completely excluding it. Our
numerical experiment in a tabular RL setting demonstrates that the SP
constraint can significantly reduce the trajectory space of policy. As a
result, our constraint enables more sample efficient learning by suppressing
redundant exploration and exploitation. Our experiments on MiniGrid, DeepMind
Lab, Atari, and Fetch show that the proposed method significantly improves
proximal policy optimization (PPO) and outperforms existing novelty-seeking
exploration methods including count-based exploration even in continuous
control tasks, indicating that it improves the sample efficiency by preventing
the agent from taking redundant actions.
Related papers
- Learning to Explore with Lagrangians for Bandits under Unknown Linear Constraints [8.784438985280094]
We study problems as pure exploration in multi-armed bandits with unknown linear constraints.
First, we propose a Lagrangian relaxation of the sample complexity lower bound for pure exploration under constraints.
Second, we leverage the Lagrangian lower bound and the properties of convex to propose two computationally efficient extensions of Track-and-Stop and Gamified Explorer, namely LATS and LAGEX.
arXiv Detail & Related papers (2024-10-24T15:26:14Z) - Exterior Penalty Policy Optimization with Penalty Metric Network under Constraints [52.37099916582462]
In Constrained Reinforcement Learning (CRL), agents explore the environment to learn the optimal policy while satisfying constraints.
We propose a theoretically guaranteed penalty function method, Exterior Penalty Policy Optimization (EPO), with adaptive penalties generated by a Penalty Metric Network (PMN)
PMN responds appropriately to varying degrees of constraint violations, enabling efficient constraint satisfaction and safe exploration.
arXiv Detail & Related papers (2024-07-22T10:57:32Z) - Safe Exploration Incurs Nearly No Additional Sample Complexity for
Reward-free RL [43.672794342894946]
Reward-free reinforcement learning (RF-RL) relies on random action-taking to explore the unknown environment without any reward feedback information.
It remains unclear how such safe exploration requirement would affect the corresponding sample complexity in order to achieve the desired optimality of the obtained policy in planning.
We propose a unified Safe reWard-frEe ExploraTion (SWEET) framework, and develop algorithms coined Tabular-SWEET and Low-rank-SWEET, respectively.
arXiv Detail & Related papers (2022-06-28T15:00:45Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - COptiDICE: Offline Constrained Reinforcement Learning via Stationary
Distribution Correction Estimation [73.17078343706909]
offline constrained reinforcement learning (RL) problem, in which the agent aims to compute a policy that maximizes expected return while satisfying given cost constraints, learning only from a pre-collected dataset.
We present an offline constrained RL algorithm that optimize the policy in the space of the stationary distribution.
Our algorithm, COptiDICE, directly estimates the stationary distribution corrections of the optimal policy with respect to returns, while constraining the cost upper bound, with the goal of yielding a cost-conservative policy for actual constraint satisfaction.
arXiv Detail & Related papers (2022-04-19T15:55:47Z) - Escaping from Zero Gradient: Revisiting Action-Constrained Reinforcement
Learning via Frank-Wolfe Policy Optimization [5.072893872296332]
Action-constrained reinforcement learning (RL) is a widely-used approach in various real-world applications.
We propose a learning algorithm that decouples the action constraints from the policy parameter update.
We show that the proposed algorithm significantly outperforms the benchmark methods on a variety of control tasks.
arXiv Detail & Related papers (2021-02-22T14:28:03Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.