Sampling for Deep Learning Model Diagnosis (Technical Report)
- URL: http://arxiv.org/abs/2002.09754v1
- Date: Sat, 22 Feb 2020 19:24:16 GMT
- Title: Sampling for Deep Learning Model Diagnosis (Technical Report)
- Authors: Parmita Mehta, Stephen Portillo, Magdalena Balazinska, Andrew Connolly
- Abstract summary: Black-box nature of deep neural networks is a barrier to adoption in applications such as medical diagnosis.
We develop a novel data sampling technique that produce approximate but accurate results for these model debug queries.
We evaluate our techniques on one standard computer vision and one scientific data set and demonstrate that our sampling technique outperforms a variety of state-of-the-art alternatives in terms of query accuracy.
- Score: 5.8057675678464555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning (DL) models have achieved paradigm-changing performance in many
fields with high dimensional data, such as images, audio, and text. However,
the black-box nature of deep neural networks is a barrier not just to adoption
in applications such as medical diagnosis, where interpretability is essential,
but also impedes diagnosis of under performing models. The task of diagnosing
or explaining DL models requires the computation of additional artifacts, such
as activation values and gradients. These artifacts are large in volume, and
their computation, storage, and querying raise significant data management
challenges.
In this paper, we articulate DL diagnosis as a data management problem, and
we propose a general, yet representative, set of queries to evaluate systems
that strive to support this new workload. We further develop a novel data
sampling technique that produce approximate but accurate results for these
model debugging queries. Our sampling technique utilizes the lower dimension
representation learned by the DL model and focuses on model decision boundaries
for the data in this lower dimensional space. We evaluate our techniques on one
standard computer vision and one scientific data set and demonstrate that our
sampling technique outperforms a variety of state-of-the-art alternatives in
terms of query accuracy.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - ProtoAL: Interpretable Deep Active Learning with prototypes for medical imaging [0.6292138336765966]
We propose the ProtoAL method, where we integrate an interpretable DL model into the Deep Active Learning framework.
We evaluated ProtoAL on the Messidor dataset, achieving an area under the precision-recall curve of 0.79 while utilizing only 76.54% of the available labeled data.
arXiv Detail & Related papers (2024-04-06T21:39:49Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
This paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task.
Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously.
In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation.
arXiv Detail & Related papers (2024-03-27T02:24:00Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - An interpretable deep learning method for bearing fault diagnosis [12.069344716912843]
We utilize a convolutional neural network (CNN) with Gradient-weighted Class Activation Mapping (Grad-CAM) visualizations to form an interpretable Deep Learning (DL) method for classifying bearing faults.
During the model evaluation process, the proposed approach retrieves prediction basis samples from the health library according to the similarity of the feature importance.
arXiv Detail & Related papers (2023-08-20T15:22:08Z) - Deep Learning Approaches for Data Augmentation in Medical Imaging: A
Review [2.8145809047875066]
We focus on three types of deep generative models for medical image augmentation: variational autoencoders, generative adversarial networks, and diffusion models.
We provide an overview of the current state of the art in each of these models and discuss their potential for use in different downstream tasks in medical imaging, including classification, segmentation, and cross-modal translation.
Our goal is to provide a comprehensive review about the use of deep generative models for medical image augmentation and to highlight the potential of these models for improving the performance of deep learning algorithms in medical image analysis.
arXiv Detail & Related papers (2023-07-24T20:53:59Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.