Network Clustering Via Kernel-ARMA Modeling and the Grassmannian The
Brain-Network Case
- URL: http://arxiv.org/abs/2002.09943v1
- Date: Tue, 18 Feb 2020 19:48:38 GMT
- Title: Network Clustering Via Kernel-ARMA Modeling and the Grassmannian The
Brain-Network Case
- Authors: Cong Ye, Konstantinos Slavakis, Pratik V. Patil, Johan Nakuci, Sarah
F. Muldoon, John Medaglia
- Abstract summary: This paper introduces a clustering framework for networks with nodes annotated with time-series data.
The framework addresses all types of network-clustering problems: state clustering, node clustering within states, and even subnetwork-state-sequence identification/tracking.
- Score: 6.78543866474958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a clustering framework for networks with nodes
annotated with time-series data. The framework addresses all types of
network-clustering problems: State clustering, node clustering within states
(a.k.a. topology identification or community detection), and even
subnetwork-state-sequence identification/tracking. Via a bottom-up approach,
features are first extracted from the raw nodal time-series data by kernel
autoregressive-moving-average modeling to reveal non-linear dependencies and
low-rank representations, and then mapped onto the Grassmann manifold
(Grassmannian). All clustering tasks are performed by leveraging the underlying
Riemannian geometry of the Grassmannian in a novel way. To validate the
proposed framework, brain-network clustering is considered, where extensive
numerical tests on synthetic and real functional magnetic resonance imaging
(fMRI) data demonstrate that the advocated learning framework compares
favorably versus several state-of-the-art clustering schemes.
Related papers
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
We develop a novel multi-view clustering based on semi-non-negative tensor factorization (Semi-NTF)
Our model directly considers the between-view relationship and exploits the between-view complementary information.
In addition, we provide an optimization algorithm for the proposed method and prove mathematically that the algorithm always converges to the stationary KKT point.
arXiv Detail & Related papers (2023-03-29T14:54:19Z) - Community detection in complex networks via node similarity, graph
representation learning, and hierarchical clustering [4.264842058017711]
Community detection is a critical challenge in analysing real graphs.
This article proposes three new, general, hierarchical frameworks to deal with this task.
We compare over a hundred module combinations on the Block Model graphs and real-life datasets.
arXiv Detail & Related papers (2023-03-21T22:12:53Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Deep Embedded Clustering with Distribution Consistency Preservation for
Attributed Networks [15.895606627146291]
In this study, we propose an end-to-end deep embedded clustering model for attributed networks.
It utilizes graph autoencoder and node attribute autoencoder to respectively learn node representations and cluster assignments.
The proposed model achieves significantly better or competitive performance compared with the state-of-the-art methods.
arXiv Detail & Related papers (2022-05-28T02:35:34Z) - A Modular Framework for Centrality and Clustering in Complex Networks [0.6423239719448168]
In this paper, we study two important such network analysis techniques, namely, centrality and clustering.
An information-flow based model is adopted for clustering, which itself builds upon an information theoretic measure for computing centrality.
Our clustering naturally inherits the flexibility to accommodate edge directionality, as well as different interpretations and interplay between edge weights and node degrees.
arXiv Detail & Related papers (2021-11-23T03:01:29Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Community models for networks observed through edge nominations [6.442024233731203]
Communities are a common and widely studied structure in networks, typically under the assumption that the network is fully and correctly observed.
We propose a general model for a class of network sampling mechanisms based on recording edges via querying nodes.
We show community detection can be performed by spectral clustering under this general class of models.
arXiv Detail & Related papers (2020-08-09T04:53:13Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
We re-interpret node aggregation from the perspective of kernel weighting.
We present a framework to consider feature similarity in an aggregation scheme.
We propose feature aggregation as the composition of the original neighbor-based kernel and a learnable kernel to encode feature similarities in a feature space.
arXiv Detail & Related papers (2020-05-16T04:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.