MHGNet: Multi-Heterogeneous Graph Neural Network for Traffic Prediction
- URL: http://arxiv.org/abs/2501.03635v1
- Date: Tue, 07 Jan 2025 09:10:09 GMT
- Title: MHGNet: Multi-Heterogeneous Graph Neural Network for Traffic Prediction
- Authors: Mei Wu, Yiqian Lin, Tianfan Jiang, Wenchao Weng,
- Abstract summary: MHGNet is a novel framework for modeling multi-heterogeneous graphs.
The STD Module decouples single-pattern traffic data into multi-pattern traffic data.
The Node Clusterer leverages the Euclidean distance between nodes to perform clustering with O(N) time complexity.
- Score: 0.0937465283958018
- License:
- Abstract: In recent years, traffic flow prediction has played a crucial role in the management of intelligent transportation systems. However, traditional forecasting methods often model non-Euclidean low-dimensional traffic data as a simple graph with single-type nodes and edges, failing to capture similar trends among nodes of the same type. To address this limitation, this paper proposes MHGNet, a novel framework for modeling spatiotemporal multi-heterogeneous graphs. Within this framework, the STD Module decouples single-pattern traffic data into multi-pattern traffic data through feature mappings of timestamp embedding matrices and node embedding matrices. Subsequently, the Node Clusterer leverages the Euclidean distance between nodes and different types of limit points to perform clustering with O(N) time complexity. The nodes within each cluster undergo residual subgraph convolution within the spatiotemporal fusion subgraphs generated by the DSTGG Module, followed by processing in the SIE Module for node repositioning and redistribution of weights. To validate the effectiveness of MHGNet, this paper conducts extensive ablation studies and quantitative evaluations on four widely used benchmarks, demonstrating its superior performance.
Related papers
- Graph Mixture of Experts and Memory-augmented Routers for Multivariate Time Series Anomaly Detection [28.57277614615255]
In this paper, we propose a Graph Mixture of Experts (Graph-MoE) network for multivariate time series anomaly detection.
Our Graph-MoE can be integrated into any GNN-based MTS anomaly detection method in a plug-and-play manner.
In addition, the memory-augmented routers are proposed in this paper to capture the correlation temporal information in terms of the global historical features of MTS.
arXiv Detail & Related papers (2024-12-26T07:49:51Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - CGGM: A conditional graph generation model with adaptive sparsity for node anomaly detection in IoT networks [40.85847606876151]
We propose a novel graph generation model, called CGGM, specifically for generating samples belonging to the minority class.
The framework consists two core module: a conditional graph generation module and a graph-based anomaly detection module.
Experiments have shown that CGGM outperforms the state-of-the-art methods in terms of accuracy and divergence.
arXiv Detail & Related papers (2024-02-27T09:55:34Z) - Meta Attentive Graph Convolutional Recurrent Network for Traffic
Forecasting [32.53813334921991]
We propose a novel traffic predictor, named Meta Attentive Graph Convolutional Recurrent Network (MAGCRN)
MAGCRN utilizes a Graph Convolutional Recurrent Network (GCRN) as a core module to model local dependencies and improves its operation with two novel modules.
Experiments on six real-world traffic datasets demonstrate that NMPL and NAWG together enable MAGCRN to outperform state-of-the-art baselines on both short- and long-term predictions.
arXiv Detail & Related papers (2023-08-28T07:49:30Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph
Neural Network [2.7088996845250897]
We argue that temporal is less effective to extract the complex-temporal relationship with such factorized modules.
We propose a Unified S-weekly Graph Convolution (USTGCN) for traffic forecasting that performs both spatial and temporal aggregation.
Our model USTGCN can outperform state-of-the-art performances in three popular benchmark datasets.
arXiv Detail & Related papers (2021-04-26T12:33:17Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Network Clustering Via Kernel-ARMA Modeling and the Grassmannian The
Brain-Network Case [6.78543866474958]
This paper introduces a clustering framework for networks with nodes annotated with time-series data.
The framework addresses all types of network-clustering problems: state clustering, node clustering within states, and even subnetwork-state-sequence identification/tracking.
arXiv Detail & Related papers (2020-02-18T19:48:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.