Deep Embedded Clustering with Distribution Consistency Preservation for
Attributed Networks
- URL: http://arxiv.org/abs/2205.14303v1
- Date: Sat, 28 May 2022 02:35:34 GMT
- Title: Deep Embedded Clustering with Distribution Consistency Preservation for
Attributed Networks
- Authors: Yimei Zheng, Caiyan Jia, Jian Yu, Xuanya Li
- Abstract summary: In this study, we propose an end-to-end deep embedded clustering model for attributed networks.
It utilizes graph autoencoder and node attribute autoencoder to respectively learn node representations and cluster assignments.
The proposed model achieves significantly better or competitive performance compared with the state-of-the-art methods.
- Score: 15.895606627146291
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many complex systems in the real world can be characterized by attributed
networks. To mine the potential information in these networks, deep embedded
clustering, which obtains node representations and clusters simultaneously, has
been paid much attention in recent years. Under the assumption of consistency
for data in different views, the cluster structure of network topology and that
of node attributes should be consistent for an attributed network. However,
many existing methods ignore this property, even though they separately encode
node representations from network topology and node attributes meanwhile
clustering nodes on representation vectors learnt from one of the views.
Therefore, in this study, we propose an end-to-end deep embedded clustering
model for attributed networks. It utilizes graph autoencoder and node attribute
autoencoder to respectively learn node representations and cluster assignments.
In addition, a distribution consistency constraint is introduced to maintain
the latent consistency of cluster distributions of two views. Extensive
experiments on several datasets demonstrate that the proposed model achieves
significantly better or competitive performance compared with the
state-of-the-art methods. The source code can be found at
https://github.com/Zhengymm/DCP.
Related papers
- A Dirichlet stochastic block model for composition-weighted networks [0.0]
We propose a block model for composition-weighted networks based on direct modelling of compositional weight vectors.
Inference is implemented via an extension of the classification expectation-maximisation algorithm.
The model is validated using simulation studies, and showcased on network data from the Erasmus exchange program and a bike sharing network for the city of London.
arXiv Detail & Related papers (2024-08-01T15:41:07Z) - Exact Recovery and Bregman Hard Clustering of Node-Attributed Stochastic
Block Model [0.16385815610837165]
This paper presents an information-theoretic criterion for the exact recovery of community labels.
It shows how network and attribute information can be exchanged in order to have exact recovery.
It also presents an iterative clustering algorithm that maximizes the joint likelihood.
arXiv Detail & Related papers (2023-10-30T16:46:05Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Variational Co-embedding Learning for Attributed Network Clustering [30.7006907516984]
Recent works for attributed network clustering utilize graph convolution to obtain node embeddings and simultaneously perform clustering assignments on the embedding space.
We propose a variational co-embedding learning model for attributed network clustering (ANC)
ANC is composed of dual variational auto-encoders to simultaneously embed nodes and attributes.
arXiv Detail & Related papers (2021-04-15T08:11:47Z) - Graph Prototypical Networks for Few-shot Learning on Attributed Networks [72.31180045017835]
We propose a graph meta-learning framework -- Graph Prototypical Networks (GPN)
GPN is able to perform textitmeta-learning on an attributed network and derive a highly generalizable model for handling the target classification task.
arXiv Detail & Related papers (2020-06-23T04:13:23Z) - Unsupervised Differentiable Multi-aspect Network Embedding [52.981277420394846]
We propose a novel end-to-end framework for multi-aspect network embedding, called asp2vec.
Our proposed framework can be readily extended to heterogeneous networks.
arXiv Detail & Related papers (2020-06-07T19:26:20Z) - A Block-based Generative Model for Attributed Networks Embedding [42.00826538556588]
We propose a block-based generative model for attributed network embedding from a probability perspective.
We use a neural network to characterize the nonlinearity between node embeddings and node attributes.
The results show that our proposed method consistently outperforms state-of-the-art embedding methods for both clustering and classification tasks.
arXiv Detail & Related papers (2020-01-06T03:44:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.