論文の概要: FR-Train: A Mutual Information-Based Approach to Fair and Robust
Training
- arxiv url: http://arxiv.org/abs/2002.10234v2
- Date: Fri, 3 Jul 2020 07:46:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 03:01:38.627438
- Title: FR-Train: A Mutual Information-Based Approach to Fair and Robust
Training
- Title(参考訳): FR-Train: 公正かつロバストなトレーニングのための相互情報に基づくアプローチ
- Authors: Yuji Roh, Kangwook Lee, Steven Euijong Whang, Changho Suh
- Abstract要約: 本稿では,公正でロバストなモデルトレーニングを行うFR-Trainを提案する。
我々の実験では、FR-Trainは、データ中毒の存在下での公正さと正確さのほとんど低下を示さなかった。
- 参考スコア(独自算出の注目度): 33.385118640843416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trustworthy AI is a critical issue in machine learning where, in addition to
training a model that is accurate, one must consider both fair and robust
training in the presence of data bias and poisoning. However, the existing
model fairness techniques mistakenly view poisoned data as an additional bias
to be fixed, resulting in severe performance degradation. To address this
problem, we propose FR-Train, which holistically performs fair and robust model
training. We provide a mutual information-based interpretation of an existing
adversarial training-based fairness-only method, and apply this idea to
architect an additional discriminator that can identify poisoned data using a
clean validation set and reduce its influence. In our experiments, FR-Train
shows almost no decrease in fairness and accuracy in the presence of data
poisoning by both mitigating the bias and defending against poisoning. We also
demonstrate how to construct clean validation sets using crowdsourcing, and
release new benchmark datasets.
- Abstract(参考訳): 信頼できるAIは、正確であるモデルのトレーニングに加えて、データのバイアスと中毒の存在下で公正かつ堅牢なトレーニングも考慮する必要がある、機械学習における重要な問題である。
しかし、既存のモデルフェアネス技術は、誤って有毒データを修正すべき追加バイアスと見なしているため、性能が著しく低下する。
そこで本研究では,公平で堅牢なモデルトレーニングを行うFR-Trainを提案する。
既存の敵対的トレーニングに基づくフェアネスのみの方法の相互情報に基づく解釈を提供し、この考え方を、清潔な検証セットを用いて有毒データを識別し、その影響を低減できる追加の判別器の設計に適用する。
実験において,fr-trainは,バイアス軽減と中毒防止の両方によるデータ中毒の有無において,公平性と正確性がほとんど低下しないことを示した。
また,クラウドソーシングを用いたクリーンな検証セットの構築方法を示し,ベンチマークデータセットをリリースする。
関連論文リスト
- Achievable Fairness on Your Data With Utility Guarantees [16.78730663293352]
機械学習の公平性において、異なるセンシティブなグループ間の格差を最小限に抑えるトレーニングモデルは、しばしば精度を低下させる。
本稿では,各データセットに適合する公平性-正確性トレードオフ曲線を近似する計算効率のよい手法を提案する。
そこで我々は,モデルフェアネスを監査するための堅牢な枠組みを実践者に提供し,評価の不確実性を定量化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-27T00:59:32Z) - Towards Poisoning Fair Representations [26.47681999979761]
本研究は、公正表現学習手法を攻撃した最初のデータ中毒フレームワークを提案する。
トレーニングデータに慎重に毒を盛ったサンプルを注入することにより、できるだけ多くの人口統計情報を含む不公平な表現を出力するモデルを誘導する。
ベンチマークフェアネスデータセットと最先端の公正表現学習モデルの実験は、我々の攻撃の優位性を実証している。
論文 参考訳(メタデータ) (2023-09-28T14:51:20Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Provable Fairness for Neural Network Models using Formal Verification [10.90121002896312]
本稿では,ニューラルネットワークモデルの特性を検証する形式的手法を用いて,公平性を向上する手法を提案する。
適切なトレーニングによって、AUCスコアの1%未満のコストで、平均65.4%の不公平さを削減できることを示す。
論文 参考訳(メタデータ) (2022-12-16T16:54:37Z) - Certified Robustness in Federated Learning [54.03574895808258]
我々は,フェデレーショントレーニングとパーソナライゼーション,および認定ロバストネスの相互作用について検討した。
単純なフェデレーション平均化技術は, より正確であるだけでなく, より精度の高いロバストモデルの構築にも有効であることがわかった。
論文 参考訳(メタデータ) (2022-06-06T12:10:53Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
本稿では,FAIRIFという2段階の学習アルゴリズムを提案する。
サンプル重みが計算される再重み付きデータセットの損失を最小限に抑える。
FAIRIFは、様々な種類のバイアスに対して、フェアネスとユーティリティのトレードオフを良くしたモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T05:14:48Z) - To be Robust or to be Fair: Towards Fairness in Adversarial Training [83.42241071662897]
逆行訓練アルゴリズムは、異なるデータ群間の精度と堅牢性に深刻な違いをもたらす傾向がある。
本稿では、敵防衛を行う際の不公平問題を軽減するためのFair-Robust-Learning(FRL)フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-13T02:21:54Z) - Fairness-aware Agnostic Federated Learning [47.26747955026486]
我々は、未知のテスト分布の課題に対処するために、公正に意識しない連邦学習フレームワーク(AgnosticFair)を開発した。
我々はカーネルリライジング関数を用いて、損失関数と公正制約の両方において各トレーニングサンプルにリライジング値を割り当てる。
構築されたモデルは、ローカルデータ配信の公平性を保証するため、ローカルサイトに直接適用することができる。
論文 参考訳(メタデータ) (2020-10-10T17:58:20Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z) - On Adversarial Bias and the Robustness of Fair Machine Learning [11.584571002297217]
異なるサイズと分布の群に同じ重要性を与えることで、トレーニングデータにおけるバイアスの影響を防止できることが、ロバストネスと矛盾する可能性があることを示す。
少数のトレーニングデータのサンプリングやラベル付けを制御できる敵は、制約のないモデルで達成できる以上のテスト精度を著しく削減することができる。
我々は、複数のアルゴリズムとベンチマークデータセットに対する攻撃の実証的な評価を通じて、公正な機械学習の堅牢性を分析する。
論文 参考訳(メタデータ) (2020-06-15T18:17:44Z) - Precise Tradeoffs in Adversarial Training for Linear Regression [55.764306209771405]
本稿では,ガウス的特徴を伴う線形回帰の文脈における対人訓練の役割を,正確かつ包括的に理解する。
我々は,同時代のミニマックス対逆訓練手法によって達成された標準/ロバスト精度とそれに対応するトレードオフを正確に特徴づける。
逆行訓練アルゴリズムの理論は、様々な要因(トレーニングデータのサイズや品質、モデルの過度化など)がこれらの2つの競合するアキュラシー間のトレードオフにどのように影響するかを厳密に研究する上で役立ちます。
論文 参考訳(メタデータ) (2020-02-24T19:01:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。