論文の概要: Achievable Fairness on Your Data With Utility Guarantees
- arxiv url: http://arxiv.org/abs/2402.17106v4
- Date: Sat, 09 Nov 2024 15:34:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:06:36.193748
- Title: Achievable Fairness on Your Data With Utility Guarantees
- Title(参考訳): 実用性保証によるデータの公平性の達成
- Authors: Muhammad Faaiz Taufiq, Jean-Francois Ton, Yang Liu,
- Abstract要約: 機械学習の公平性において、異なるセンシティブなグループ間の格差を最小限に抑えるトレーニングモデルは、しばしば精度を低下させる。
本稿では,各データセットに適合する公平性-正確性トレードオフ曲線を近似する計算効率のよい手法を提案する。
そこで我々は,モデルフェアネスを監査するための堅牢な枠組みを実践者に提供し,評価の不確実性を定量化する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 16.78730663293352
- License:
- Abstract: In machine learning fairness, training models that minimize disparity across different sensitive groups often leads to diminished accuracy, a phenomenon known as the fairness-accuracy trade-off. The severity of this trade-off inherently depends on dataset characteristics such as dataset imbalances or biases and therefore, using a uniform fairness requirement across diverse datasets remains questionable. To address this, we present a computationally efficient approach to approximate the fairness-accuracy trade-off curve tailored to individual datasets, backed by rigorous statistical guarantees. By utilizing the You-Only-Train-Once (YOTO) framework, our approach mitigates the computational burden of having to train multiple models when approximating the trade-off curve. Crucially, we introduce a novel methodology for quantifying uncertainty in our estimates, thereby providing practitioners with a robust framework for auditing model fairness while avoiding false conclusions due to estimation errors. Our experiments spanning tabular (e.g., Adult), image (CelebA), and language (Jigsaw) datasets underscore that our approach not only reliably quantifies the optimum achievable trade-offs across various data modalities but also helps detect suboptimality in SOTA fairness methods.
- Abstract(参考訳): 機械学習のフェアネスでは、異なるセンシティブなグループ間の格差を最小限に抑えるトレーニングモデルはしばしば精度を低下させる。
このトレードオフの深刻さは、本質的にデータセットの不均衡やバイアスといったデータセット特性に依存しているため、多様なデータセット間で均一な公平性要件を使用することは疑問の余地が残る。
これを解決するために、厳密な統計的保証を背景として、個々のデータセットに適合する公平性-正確性トレードオフ曲線を近似する計算効率の良い手法を提案する。
You-Only-Train-Once(YOTO)フレームワークを利用することで、トレードオフ曲線を近似する際に複数のモデルを訓練する際の計算負担を軽減する。
そこで本研究では,推定誤差による誤った結論を避けつつ,モデルフェアネスを監査する堅牢な枠組みを実践者に提供し,評価の不確実性を定量化する手法を提案する。
我々の実験は、表形式(例えば、アダルト)、画像(CelebA)、言語(Jigsaw)データセットにまたがるものであり、我々のアプローチは、様々なデータモダリティで達成可能な最適トレードオフを確実に定量化するだけでなく、SOTAフェアネス法における準最適性の検出にも役立ちます。
関連論文リスト
- Targeted Learning for Data Fairness [52.59573714151884]
データ生成プロセス自体の公平性を評価することにより、公平性推論を拡張する。
我々は、人口統計学的平等、平等機会、条件付き相互情報から推定する。
提案手法を検証するため,いくつかのシミュレーションを行い,実データに適用する。
論文 参考訳(メタデータ) (2025-02-06T18:51:28Z) - Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
本稿では,ランダムラベルノイズによる交換性からの偏差を効率的に処理できる適応型共形推論手法を提案する。
本手法は,合成および実データに対して,その有効性を示す広範囲な数値実験により検証する。
論文 参考訳(メタデータ) (2025-01-29T23:55:23Z) - A Conformal Approach to Feature-based Newsvendor under Model Misspecification [2.801095519296785]
共形予測にインスパイアされたモデルフリーで分散フリーなフレームワークを提案する。
ワシントンD.C.のCapital Bikeshareプログラムのシミュレーションデータと実世界のデータセットを用いて,我々のフレームワークを検証する。
論文 参考訳(メタデータ) (2024-12-17T18:34:43Z) - Navigating Towards Fairness with Data Selection [27.731128352096555]
ラベルバイアスを効率的かつ柔軟に緩和するデータ選択法を提案する。
提案手法では,ゼロショット予測器をプロキシモデルとして利用し,クリーンなホールトアウトセットでのトレーニングをシミュレートする。
我々のモダリティ非依存手法は,実験評価において,ラベルバイアスの処理と多種多様なデータセット間の公正性向上に効果的かつ効果的であることが証明された。
論文 参考訳(メタデータ) (2024-12-15T06:11:05Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
トレーニング前にデータセットから削除すべき特定の種類のバイアスを記述したインスタンスを検出できるデータ前処理手法を提案する。
特に、類似した特徴を持つインスタンスが存在するが、保護属性の変動に起因するラベルが異なる問題設定では、固有のバイアスがデータセット内で引き起こされる、と主張する。
論文 参考訳(メタデータ) (2022-10-24T13:04:07Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic
Multi-Objective Approach [0.0]
機械学習を実生活の意思決定システムに適用すると、予測結果は機密性の高い属性を持つ人々に対して差別され、不公平になる可能性がある。
公正機械学習における一般的な戦略は、予測損失の最小化において、制約や罰則として公正さを含めることである。
本稿では,多目的最適化問題を定式化して公平性を扱うための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-08-03T18:51:24Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。