Technical report: Kidney tumor segmentation using a 2D U-Net followed by
a statistical post-processing filter
- URL: http://arxiv.org/abs/2002.10727v1
- Date: Tue, 25 Feb 2020 08:25:33 GMT
- Title: Technical report: Kidney tumor segmentation using a 2D U-Net followed by
a statistical post-processing filter
- Authors: Iwan Paolucci
- Abstract summary: Each year, there are about 400'000 new cases of kidney cancer worldwide causing around 175'000 deaths.
For clinical decision making it is important to understand the morphometry of the tumor.
We present a segmentation method which combines the popular U-Net convolutional neural network architecture with post-processing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Each year, there are about 400'000 new cases of kidney cancer worldwide
causing around 175'000 deaths. For clinical decision making it is important to
understand the morphometry of the tumor, which involves the time-consuming task
of delineating tumor and kidney in 3D CT images. Automatic segmentation could
be an important tool for clinicians and researchers to also study the
correlations between tumor morphometry and clinical outcomes. We present a
segmentation method which combines the popular U-Net convolutional neural
network architecture with post-processing based on statistical constraints of
the available training data. The full implementation, based on PyTorch, and the
trained weights can be found on GitHub.
Related papers
- Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
This study introduces a novel data augmentation technique, aimed at automating spine tumor segmentation and localization through AI approaches.
A Convolutional Neural Network (CNN) architecture is employed for tumor classification. 3D vertebral segmentation and labeling techniques are used to help pinpoint the exact location of the tumors in the lumbar spine.
Results indicate a remarkable performance, with 99% accuracy for tumor segmentation, 98% accuracy for tumor classification, and 99% accuracy for tumor localization achieved with the proposed approach.
arXiv Detail & Related papers (2024-05-07T05:55:50Z) - Investigating certain choices of CNN configurations for brain lesion
segmentation [5.148195106469231]
Deep learning models, in particular CNNs, have been a methodology of choice in many applications of medical image analysis including brain tumor segmentation.
We investigated the main design aspects of CNN models for the specific task of MRI-based brain tumor segmentation.
arXiv Detail & Related papers (2022-12-02T15:24:44Z) - Integrative Imaging Informatics for Cancer Research: Workflow Automation
for Neuro-oncology (I3CR-WANO) [0.12175619840081271]
We propose an artificial intelligence-based solution for the aggregation and processing of multisequence neuro-Oncology MRI data.
Our end-to-end framework i) classifies MRI sequences using an ensemble classifier, ii) preprocesses the data in a reproducible manner, and iv) delineates tumor tissue subtypes.
It is robust to missing sequences and adopts an expert-in-the-loop approach, where the segmentation results may be manually refined by radiologists.
arXiv Detail & Related papers (2022-10-06T18:23:42Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation [17.756591105686]
This paper proposes hyperdense inception 3D UNet (HI-Net), which captures multi-scale information by stacking factorization of 3D weighted convolutional layers in the residual inception block.
Preliminary results on the BRATS 2020 testing set show that achieved by our proposed approach, the dice (DSC) scores of ET, WT, and TC are 0.79457, 0.87494, and 0.83712, respectively.
arXiv Detail & Related papers (2020-12-12T09:09:04Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
We automate and standardize the task of brain tumor segmentation with U-net like neural networks.
Two independent ensembles of models were trained, and each produced a brain tumor segmentation map.
Our solution achieved a Dice of 0.79, 0.89 and 0.84, as well as Hausdorff 95% of 20.4, 6.7 and 19.5mm on the final test dataset.
arXiv Detail & Related papers (2020-10-30T14:36:10Z) - Multi-Scale Supervised 3D U-Net for Kidneys and Kidney Tumor
Segmentation [0.8397730500554047]
We present a multi-scale supervised 3D U-Net, MSS U-Net, to automatically segment kidneys and kidney tumors from CT images.
Our architecture combines deep supervision with exponential logarithmic loss to increase the 3D U-Net training efficiency.
This architecture shows superior performance compared to state-of-the-art works using data from KiTS19 public dataset.
arXiv Detail & Related papers (2020-04-17T08:25:43Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.