Multi-Scale Supervised 3D U-Net for Kidneys and Kidney Tumor
Segmentation
- URL: http://arxiv.org/abs/2004.08108v1
- Date: Fri, 17 Apr 2020 08:25:43 GMT
- Title: Multi-Scale Supervised 3D U-Net for Kidneys and Kidney Tumor
Segmentation
- Authors: Wenshuai Zhao, Dihong Jiang, Jorge Pe\~na Queralta, Tomi Westerlund
- Abstract summary: We present a multi-scale supervised 3D U-Net, MSS U-Net, to automatically segment kidneys and kidney tumors from CT images.
Our architecture combines deep supervision with exponential logarithmic loss to increase the 3D U-Net training efficiency.
This architecture shows superior performance compared to state-of-the-art works using data from KiTS19 public dataset.
- Score: 0.8397730500554047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate segmentation of kidneys and kidney tumors is an essential step for
radiomic analysis as well as developing advanced surgical planning techniques.
In clinical analysis, the segmentation is currently performed by clinicians
from the visual inspection images gathered through a computed tomography (CT)
scan. This process is laborious and its success significantly depends on
previous experience. Moreover, the uncertainty in the tumor location and
heterogeneity of scans across patients increases the error rate. To tackle this
issue, computer-aided segmentation based on deep learning techniques have
become increasingly popular. We present a multi-scale supervised 3D U-Net, MSS
U-Net, to automatically segment kidneys and kidney tumors from CT images. Our
architecture combines deep supervision with exponential logarithmic loss to
increase the 3D U-Net training efficiency. Furthermore, we introduce a
connected-component based post processing method to enhance the performance of
the overall process. This architecture shows superior performance compared to
state-of-the-art works using data from KiTS19 public dataset, with the Dice
coefficient of kidney and tumor up to 0.969 and 0.805 respectively. The
segmentation techniques introduced in this paper have been tested in the KiTS19
challenge with its corresponding dataset.
Related papers
- AutoPET III Challenge: Tumor Lesion Segmentation using ResEnc-Model Ensemble [1.3467243219009812]
We trained a 3D Residual encoder U-Net within the no new U-Net framework to generalize the performance of automatic lesion segmentation.
We leveraged test-time augmentations and other post-processing techniques to enhance tumor lesion segmentation.
Our team currently hold the top position in the Auto-PET III challenge and outperformed the challenge baseline model in the preliminary test set with Dice score of 0.9627.
arXiv Detail & Related papers (2024-09-19T20:18:39Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - An Optimization Framework for Processing and Transfer Learning for the
Brain Tumor Segmentation [2.0886519175557368]
We have constructed an optimization framework based on a 3D U-Net model for brain tumor segmentation.
This framework incorporates a range of techniques, including various pre-processing and post-processing techniques, and transfer learning.
On the validation datasets, this multi-modality brain tumor segmentation framework achieves an average lesion-wise Dice score of 0.79, 0.72, 0.74 on Challenges 1, 2, 3 respectively.
arXiv Detail & Related papers (2024-02-10T18:03:15Z) - Mediastinal Lymph Node Detection and Segmentation Using Deep Learning [1.7188280334580195]
In clinical practice, computed tomography (CT) and positron emission tomography (PET) imaging detect abnormal lymph nodes (LNs)
Deep convolutional neural networks frequently segment items in medical photographs.
A well-established deep learning technique UNet was modified using bilinear and total generalized variation (TGV) based up strategy to segment and detect mediastinal lymph nodes.
The modified UNet maintains texture discontinuities, selects noisy areas, searches appropriate balance points through backpropagation, and recreates image resolution.
arXiv Detail & Related papers (2022-11-24T02:55:20Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
COVID-19 is a global pandemic disease overgrowing worldwide.
Computer-aided screening tools with greater sensitivity is imperative for disease diagnosis and prognosis.
This article proposes a 3D Convolutional Neural Network (CNN)-based classification approach.
arXiv Detail & Related papers (2021-02-11T18:16:18Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Technical report: Kidney tumor segmentation using a 2D U-Net followed by
a statistical post-processing filter [0.0]
Each year, there are about 400'000 new cases of kidney cancer worldwide causing around 175'000 deaths.
For clinical decision making it is important to understand the morphometry of the tumor.
We present a segmentation method which combines the popular U-Net convolutional neural network architecture with post-processing.
arXiv Detail & Related papers (2020-02-25T08:25:33Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
We develop a novel automatic learning-based data augmentation method for medical image segmentation.
In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss.
We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.
arXiv Detail & Related papers (2020-02-22T14:10:13Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.